Abstract
We describe how to transform constraint networks—which may involve a particular form of constraint relaxation—into corresponding Boltzmann machines, thereby viewing constraint satisfaction as a problem of combinatorial optimization. We discuss feasibility and order preservingness of the consensus function used and give a necessary and sufficient condition for a locally optimal configuration to correspond to a solution of the constraint network.
This work is partially funded by the German Federal Ministry for Research and Technology (BMFT) in the joint project TASSO under grant ITW8900A7. TASSO is also part of the GMD Leitvorhaben Assisting Computer (AC). Thanks to our colleagues Christoph Lischka and Gerd PaaB for comments on a draft of this paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, Cichester, England, 1989.
H.M. Adorf and M.D. Johnston. A discrete stochastic neural network algorithm for constraint satisfaction problems. In Proc. IJCNN-90, San Diego, California, 1990.
J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832–843, 1983.
D. Bolz and K. Wittur. Die Umsetzung deklarativer Beschreibungen von Graphiken durch Simulated Annealingm. In P. Wißkirchen K. Kansy, editor, Proc. GI-Fachgespräch Graphik und KI, pages 68–77, Berlin, Germany, 1990. Springer.
P.R. Cooper and M.J. Swain. Parallelism and domain dependence in constraint satisfaction. Technical Report 255, University of Rochester, Computer Science Department, Rochester, New York, 1988.
R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34:1–38, 1987.
J.A. Feldman and D.H. Ballard. Connectionist models and their properties. Cognitive Science, 6:201–254, 1982.
E.C. Freuder. Partial constraint satisfaction. In Proc. IJCAI-89, pages 278–283, Detroit, Michigan, 1989.
H.W. Guesgen. CONSAT: A System for Constraint Satisfaction. Research Notes in Artificial Intelligence. Morgan Kaufmann; Pitman, San Mateo, California; London, England, 1989.
J. Hertzberg, H.W. Guesgen, and H. Voss A. Voss, M. Fidelak. Relaxing constraint networks to resolve inconsistencies. In W. Hoeppner, editor, Künstliche Intelligenz, GWAI-88, pages 61–65, Berlin, Germany, 1988. Springer.
M.D. Johnston and H.-M. Adorf. Learning in stochastic neural net-works for constraint satisfaction problems. In G. Rodriguez and H. Seraij, editors, Proc. NASA Conf. on Space Tclerobotics, pages 367–376. JPL Publ., 1989.
S. Kasif. Parallel solutions to constraint satisfaction problems. In Proc. KR-89, pages 180–188, Toronto, Ontario, 1989.
A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.
R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelligence, 28:225–233, 1986.
U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelligence, 48:143–170, 1991.
A. Rosenfeld. Networks of automata: Some applications. IEEE Transactions on Systems, Man, and Cybernetics, 5:380–383, 1975.
A. Samal and T.C. Henderson. Parallel consistent labeling algorithms. International Journal of Parallel Programming, 16:341–364, 1987.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hertzberg, J., Guesgen, H.W. (1991). Transforming Constraint Relaxation Networks into Boltzmann Machines. In: Christaller, T. (eds) GWAI-91 15. Fachtagung für Künstliche Intelligenz. Informatik-Fachberichte, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02711-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-662-02711-0_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54558-3
Online ISBN: 978-3-662-02711-0
eBook Packages: Springer Book Archive