Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transforming Constraint Relaxation Networks into Boltzmann Machines

  • Conference paper
GWAI-91 15. Fachtagung für Künstliche Intelligenz

Part of the book series: Informatik-Fachberichte ((2252,volume 285))

  • 44 Accesses

Abstract

We describe how to transform constraint networks—which may involve a particular form of constraint relaxation—into corresponding Boltzmann machines, thereby viewing constraint satisfaction as a problem of combinatorial optimization. We discuss feasibility and order preservingness of the consensus function used and give a necessary and sufficient condition for a locally optimal configuration to correspond to a solution of the constraint network.

This work is partially funded by the German Federal Ministry for Research and Technology (BMFT) in the joint project TASSO under grant ITW8900A7. TASSO is also part of the GMD Leitvorhaben Assisting Computer (AC). Thanks to our colleagues Christoph Lischka and Gerd PaaB for comments on a draft of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, Cichester, England, 1989.

    MATH  Google Scholar 

  2. H.M. Adorf and M.D. Johnston. A discrete stochastic neural network algorithm for constraint satisfaction problems. In Proc. IJCNN-90, San Diego, California, 1990.

    Google Scholar 

  3. J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832–843, 1983.

    Article  MATH  Google Scholar 

  4. D. Bolz and K. Wittur. Die Umsetzung deklarativer Beschreibungen von Graphiken durch Simulated Annealingm. In P. Wißkirchen K. Kansy, editor, Proc. GI-Fachgespräch Graphik und KI, pages 68–77, Berlin, Germany, 1990. Springer.

    Chapter  Google Scholar 

  5. P.R. Cooper and M.J. Swain. Parallelism and domain dependence in constraint satisfaction. Technical Report 255, University of Rochester, Computer Science Department, Rochester, New York, 1988.

    Google Scholar 

  6. R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence, 34:1–38, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.A. Feldman and D.H. Ballard. Connectionist models and their properties. Cognitive Science, 6:201–254, 1982.

    Article  Google Scholar 

  8. E.C. Freuder. Partial constraint satisfaction. In Proc. IJCAI-89, pages 278–283, Detroit, Michigan, 1989.

    Google Scholar 

  9. H.W. Guesgen. CONSAT: A System for Constraint Satisfaction. Research Notes in Artificial Intelligence. Morgan Kaufmann; Pitman, San Mateo, California; London, England, 1989.

    Google Scholar 

  10. J. Hertzberg, H.W. Guesgen, and H. Voss A. Voss, M. Fidelak. Relaxing constraint networks to resolve inconsistencies. In W. Hoeppner, editor, Künstliche Intelligenz, GWAI-88, pages 61–65, Berlin, Germany, 1988. Springer.

    Chapter  Google Scholar 

  11. M.D. Johnston and H.-M. Adorf. Learning in stochastic neural net-works for constraint satisfaction problems. In G. Rodriguez and H. Seraij, editors, Proc. NASA Conf. on Space Tclerobotics, pages 367–376. JPL Publ., 1989.

    Google Scholar 

  12. S. Kasif. Parallel solutions to constraint satisfaction problems. In Proc. KR-89, pages 180–188, Toronto, Ontario, 1989.

    Google Scholar 

  13. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

    Article  MATH  Google Scholar 

  14. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelligence, 28:225–233, 1986.

    Article  Google Scholar 

  15. U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelligence, 48:143–170, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Rosenfeld. Networks of automata: Some applications. IEEE Transactions on Systems, Man, and Cybernetics, 5:380–383, 1975.

    MathSciNet  MATH  Google Scholar 

  17. A. Samal and T.C. Henderson. Parallel consistent labeling algorithms. International Journal of Parallel Programming, 16:341–364, 1987.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hertzberg, J., Guesgen, H.W. (1991). Transforming Constraint Relaxation Networks into Boltzmann Machines. In: Christaller, T. (eds) GWAI-91 15. Fachtagung für Künstliche Intelligenz. Informatik-Fachberichte, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02711-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02711-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54558-3

  • Online ISBN: 978-3-662-02711-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics