Abstract
R. Schoen has asked whether the sphere and the cylinder are the only complete (almost) embedded constant mean curvature surfaces with finite absolute total curvature. We propose an infinite family of such surfaces. The existence of examples of this kind is supported by results of computer experiments we carried out using an algorithm developed by Oberknapp and Polthier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Cohn-Vossen, Sur la courbure totale des surfaces ouvertes, C. R. Acad. Sci. 197 (1933), 1165–1167.
C. Delaunay, Sur la surface de révolution, dont la courbure moyenne est constante, Journal de mathématiques 6 (1841), 309–320.
J. Eells, The surfaces of Delaunay, The Math. Intell. 9 (1987), 53–57.
K. Grosse-Brauckmann, New surfaces of constant mean curvature, Math. Zeit. 214 (1993), 527–565.
K. Grosse-Brauckmann, R. Kusner, Moduli spaces of embedded constant mean curvature with few ends and special symmetry, SFB 256 preprint 483, Bonn, 1996.
K. Grosse-Brauckmann, R. Kusner, J. Sullivan, Classification of embedded constant mean curvature surfaces with genus zero and three ends, preprint, 1997.
K. Grosse-Brauckmann, K. Polthier, Constant mean curvature surfaces derived from Delaunay’s and Wente’s examples, p. 119–134 in: Visualization and Mathematics (H.-C. Hege, K. Polthier, eds.), Springer Verlag Heidelberg, 1997.
N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. 131 (1990), 239–330.
H. Karcher, The triply periodic minimal surfaces of A. Schoen and their constant mean curvature companions, Man. math. 64 (1989), 291–357.
N. Korevaar, R. Kusner, The global structure of constant mean curvature surfaces, Invent. Math. 114 (1993), 311–332.
N. Korevaar, R. Kusner, B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Diff. Geom. 30 (1989), 465–503.
R. Kusner, Bubbles, conservation laws, and balanced diagrams. In: Geometric analysis and computer graphics (P. Concus, R. Finn, D. Hoffman, eds.), 103–108, Springer New York, 1990.
R. Kusner, A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. In: Global differential geometry and global analysis, 108–114, Lect. Notes Math. 1481, Springer Berlin 1991.
R. Kusner, R. Mazzeo, D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 (1996), 120–137.
H.B. Lawson, Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335–374.
R. Mazzeo, D. Pollack, Gluing and moduli for noncompact geometric problems, preprint, 1996.
W.H. Meeks, The topology and geometry of embedded surfaces of constant mean curvature, J. Diff. Geom. 27 (1988), 539–552.
B. Oberknapp, K. Polthier, An algorithm for discrete constant mean curvature surfaces, p. 141–161 in: Visualization and Mathematics (H.-C. Hege, K. Polthier, eds.), Springer Verlag Heidelberg, 1997.
U. Pinkall, I. Sterling, On the classification of constant mean curvature tori, Ann. of Math. 130, 407–451 (1989)
I. Sterling, H. C. Wente, Existence and classification of constant mean curvature multibubbletons of finite and infinite type, Indiana Univ. Math. J. 42 (1993), 1239–1266.
H. Wente, Constant mean curvature immersions of Enneper type, Memoirs of the AMS 478, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Große-Brauckmann, K., Kusner, R.B., Sullivan, J.M. (1998). Constant Mean Curvature Surfaces with Cylindrical Ends. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-03567-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-08373-0
Online ISBN: 978-3-662-03567-2
eBook Packages: Springer Book Archive