Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Constant Mean Curvature Surfaces with Cylindrical Ends

  • Chapter
Mathematical Visualization

Abstract

R. Schoen has asked whether the sphere and the cylinder are the only complete (almost) embedded constant mean curvature surfaces with finite absolute total curvature. We propose an infinite family of such surfaces. The existence of examples of this kind is supported by results of computer experiments we carried out using an algorithm developed by Oberknapp and Polthier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Cohn-Vossen, Sur la courbure totale des surfaces ouvertes, C. R. Acad. Sci. 197 (1933), 1165–1167.

    Google Scholar 

  2. C. Delaunay, Sur la surface de révolution, dont la courbure moyenne est constante, Journal de mathématiques 6 (1841), 309–320.

    Google Scholar 

  3. J. Eells, The surfaces of Delaunay, The Math. Intell. 9 (1987), 53–57.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Grosse-Brauckmann, New surfaces of constant mean curvature, Math. Zeit. 214 (1993), 527–565.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Grosse-Brauckmann, R. Kusner, Moduli spaces of embedded constant mean curvature with few ends and special symmetry, SFB 256 preprint 483, Bonn, 1996.

    Google Scholar 

  6. K. Grosse-Brauckmann, R. Kusner, J. Sullivan, Classification of embedded constant mean curvature surfaces with genus zero and three ends, preprint, 1997.

    Google Scholar 

  7. K. Grosse-Brauckmann, K. Polthier, Constant mean curvature surfaces derived from Delaunay’s and Wente’s examples, p. 119–134 in: Visualization and Mathematics (H.-C. Hege, K. Polthier, eds.), Springer Verlag Heidelberg, 1997.

    Chapter  Google Scholar 

  8. N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. 131 (1990), 239–330.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Karcher, The triply periodic minimal surfaces of A. Schoen and their constant mean curvature companions, Man. math. 64 (1989), 291–357.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Korevaar, R. Kusner, The global structure of constant mean curvature surfaces, Invent. Math. 114 (1993), 311–332.

    MathSciNet  MATH  Google Scholar 

  11. N. Korevaar, R. Kusner, B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Diff. Geom. 30 (1989), 465–503.

    MathSciNet  MATH  Google Scholar 

  12. R. Kusner, Bubbles, conservation laws, and balanced diagrams. In: Geometric analysis and computer graphics (P. Concus, R. Finn, D. Hoffman, eds.), 103–108, Springer New York, 1990.

    Google Scholar 

  13. R. Kusner, A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature. In: Global differential geometry and global analysis, 108–114, Lect. Notes Math. 1481, Springer Berlin 1991.

    Google Scholar 

  14. R. Kusner, R. Mazzeo, D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 (1996), 120–137.

    Article  MathSciNet  MATH  Google Scholar 

  15. H.B. Lawson, Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335–374.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Mazzeo, D. Pollack, Gluing and moduli for noncompact geometric problems, preprint, 1996.

    Google Scholar 

  17. W.H. Meeks, The topology and geometry of embedded surfaces of constant mean curvature, J. Diff. Geom. 27 (1988), 539–552.

    MathSciNet  MATH  Google Scholar 

  18. B. Oberknapp, K. Polthier, An algorithm for discrete constant mean curvature surfaces, p. 141–161 in: Visualization and Mathematics (H.-C. Hege, K. Polthier, eds.), Springer Verlag Heidelberg, 1997.

    Chapter  Google Scholar 

  19. U. Pinkall, I. Sterling, On the classification of constant mean curvature tori, Ann. of Math. 130, 407–451 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Sterling, H. C. Wente, Existence and classification of constant mean curvature multibubbletons of finite and infinite type, Indiana Univ. Math. J. 42 (1993), 1239–1266.

    MathSciNet  MATH  Google Scholar 

  21. H. Wente, Constant mean curvature immersions of Enneper type, Memoirs of the AMS 478, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Große-Brauckmann, K., Kusner, R.B., Sullivan, J.M. (1998). Constant Mean Curvature Surfaces with Cylindrical Ends. In: Hege, HC., Polthier, K. (eds) Mathematical Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03567-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03567-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08373-0

  • Online ISBN: 978-3-662-03567-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics