Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multilayer Machine Learning-Based Intrusion Detection System

  • Chapter
  • First Online:
Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 70))

  • 1441 Accesses

Abstract

Almost daily we hear news about a security breach somewhere, as hackers are constantly finding new ways to get around even the most complex firewalls and security systems. This turned the security into one of the top research areas. Artificial Immune Systems are techniques inspired by biological immune system—specifically the human immune system—which basic function is to protect the body (system) and defend against attacks of different types. For this reason, many have applied the artificial immune system in the field of network security and intrusion detection. In this chapter, a basic model of a multi-layer system is discussed, along with the basics of artificial immune systems and network intrusion detection. An actual experiment is included, which involved a layer for data preprocessing and feature selection (using Principal Component Analysis), a layer for detectors generation and anomaly detection (Using Genetic Algorithm with Negative Selection Approach), and finally a layer for detected anomalies classification (using decision tree classifiers). The principle interest of this work is to benchmark the performance of the proposed multi-layer IDS system by using NSL-KDD benchmark data set used by IDS researchers. The obtained results of the anomaly detection layer shows that up to 81 % of the attacks were successfully detected as attacks. The results of the classification layer demonstrated that naive bayes classifier has better classification accuracy in the case of lower presented attacks such as U2R and R2L, while the J48 decision tree classifier gives high accuracy up to 82 % for DoS attacks and 65.4 % for probe attacks in the anomaly traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teller, T.: The Biggest Cybersecurity Threats of 2013, Forbes magazine, May 2012

    Google Scholar 

  2. 2013 Cisco Annual Security Report, Cisco Systems

    Google Scholar 

  3. Worldwide Infrastructure Security Report, 2012 vol. VIII, ARBOR Networks

    Google Scholar 

  4. Peddabachigari, S., Abraham, A., Grosan, C., Thomas, J.: Modeling intrusion detection system using hybrid intelligent systems. J. Netw. Comput. Appl. 30(1), 114–132 (2007)

    Article  Google Scholar 

  5. Farid, D., Harbi, N., Rahman, M.Z.: Combining naive bayes and decision tree for adaptive intrusion detection. arXiv, preprint arXiv:1005.4496 (2010)

  6. Xiang, C., Yong, P.C., Meng, L.S.: Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recogn. Lett. 29(7), 918–924 (2008)

    Article  Google Scholar 

  7. Omar, S., Ngadi, A., Jebur, H.H.: An adaptive intrusion detection model based on machine learning techniques. Int. J. Comput. Appl. 70 (2013)

    Google Scholar 

  8. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks and support vector machines. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02, IEEE, vol. 2, pp. 1702–1707 (2002)

    Google Scholar 

  9. Aleksandar, L., Vipin, K., Jaideep, S.: Intrusion detection: a survey. In: Kumar, V. et al. (eds.) Managing Cyber Threats Issues, Approaches, and Challenges, vol. 5, pp. 19–78 (2005)

    Google Scholar 

  10. Murali, A., Roa, M.: A survey on intrusion detection approaches. First International Conference on Information and Communication Technologies. pp. 233–240 (2005)

    Google Scholar 

  11. Garcia-Teodora, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

    Article  Google Scholar 

  12. Li, W.: Using genetic algorithm for network intrusion detection. Proceedings of the United States Department of Energy Cyber Security Grou, Training Conference vol. 8, pp. 24–27 (2004)

    Google Scholar 

  13. Sinclair, C., Pierce, L., Matzner, S.: An application of machine learning to network intrusion detection. In: Proceedings of 15th Annual Computer Security Applications Conference, ACSAC’99, pp. 371–377, IEEE (1999)

    Google Scholar 

  14. Jolliffe, I.: Principal Component Analysis. John Wiley & Sons Ltd, New York (2005)

    Google Scholar 

  15. Smith, L.I.: A tutorial on principal components analysis. Cornell University, USA vol. 51, pp. 52 (2002)

    Google Scholar 

  16. Hofmeyr, S.A., Forrest, S.: Immunity by design: an artificial immune system. Proceedings of Genetic and Evolutionary Computation Conference, pp. 1289–1296 (1999)

    Google Scholar 

  17. Aickelin, U., Dasgupta, D.: Artificial immune systems tutorial. In: Burke, E., Kendall, G. (eds.) Search Methodologies Introductory Tutorials in Optimization and Decision Support Techniques. Kluwer, pp. 375–399 (2005)

    Google Scholar 

  18. Greensmith, J., Whitbrook, A., Aickelin, U.: Artificial immune systems. Handbook of Metaheuristics, pp. 421–448. Springer, US (2010)

    Google Scholar 

  19. Forrest, S.: Self-nonself discrimination in a computer. IEEE Computer Society Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  20. Shen, X., Gao, X.Z., Bie, R., Jin, X.: Artificial immune networks: models and applications. International Conference on Computational Intelligence and Security, vol. 1, pp. 394–397 (2006)

    Google Scholar 

  21. Galeano, G.C., Veloza-Suan, A., Gonzalez, F.A.: A comparative analysis of artificial immune network models. Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO ’05, pp. 361–368 (2005)

    Google Scholar 

  22. Ulutas, B.H., Kulturel-Konak, S.: A review of clonal selection algorithm and its applications. Artif. Intell. Rev. 36(2), 117–138 (2011)

    Article  Google Scholar 

  23. Iqbal, A., Maarof, M.A.: Danger theory and intelligent data processing. World Academy of Science, Engineering and Technology vol. 3 (2005)

    Google Scholar 

  24. Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems. Computing Research Repository—CORR 0801.3 (2008)

    Google Scholar 

  25. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. Proceedings ICARIS-2005, 4th International Conference on Artificial Immune Systems, LNCS 3627, pp. 153–167, Springer (2005)

    Google Scholar 

  26. de Castro, L.N., Timmis, J.: Artificial Immune System: A Novel Paradigm to Pattern Recognition. University of Paisley, vol. 2, pp. 67–84 (2002)

    Google Scholar 

  27. de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I Basic Theory and Applications, pp. 57–58. Springer, Berlin (1999)

    Google Scholar 

  28. Burke, E.K., Kendall, G. (eds.): Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer, Berlin (2005)

    Google Scholar 

  29. Middlemiss, M.: Positive and Negative Selection in a Multilayer Artificial Immune System. The Information Science Discussion Paper Series 2006/03, University of Otago (2006)

    Google Scholar 

  30. Dasgupta, D.: Immunity-based intrusion detection system: a general framework. In: Proceedings of the 22nd NISSC vol. 1, pp. 147–160 (1999)

    Google Scholar 

  31. Liang, G., Li, T., Ni, J., Jiang, Y., Yang, J., Gong, X.: An immunity-based dynamic multilayer intrusion detection system. In Computational Intelligence and Bioinformatics, pp. 641–650. Springer, Berlin (2006)

    Google Scholar 

  32. Aziz, A.S.A., Hassanien, A.E., Azar, A.T., Hanafi, S.E.O.: Machine learning techniques for anomalies detection and classification. Advances in Security of Information and Communication Networks, pp. 219–229. Springer, Berlin (2013)

    Google Scholar 

  33. Aziz, A.S.A., Hassanien, A.E., Hanafy, S.E.O., Tolba M.F.: Multi-layer hybrid machine learning techniques for anomalies detection and classification approach (2013)

    Google Scholar 

  34. A. Aziz, A.S., Salama, M.A., Hassanien, A.E., Hanafy, S.E.O.: Artificial Immune System Inspired Intrusion Detection System Using Genetic Algorithm. Special Issue: Advances in Network Systems Guest Editors: Andrzej Chojnacki vol. 36, pp. 347–357 (2012)

    Google Scholar 

  35. Aziz, A.S.A., Azar, A.T., Hassanien, A.E., Hanafi, S.E.O.: Continuous features discretizaion for anomaly intrusion detectors generation. In: WSC17 2012 Online Conference on Soft Computing in Industrial Applications (2012)

    Google Scholar 

  36. Khoshgoftaar, T.M., Gao, K., Ibrahim, N.H.: Evaluating indirect and direct classification techniques for network intrusion detection. Intell. Data Anal. 9(3), 309–326 (2005)

    Google Scholar 

  37. Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica 31, 249–268 (2007)

    MATH  MathSciNet  Google Scholar 

  38. Krugel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In: Recent Advances in Intrusion Detection, pp. 173–191. Springer, Berlin (2003)

    Google Scholar 

  39. Mitchell, T.M.: Machine Learning. McGraw Hill, Burr Ridge (1997)

    Google Scholar 

  40. NSL-KDD Intrusion Detection data set, http://iscx.ca/NSL-KDD/ March 2009

  41. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defence Applications (2009)

    Google Scholar 

  42. KDD Cup’99 Intrusion Detection data set, Available on: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html Oct 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Sayed A. Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aziz, A.S.A., Hassanien, A.E. (2014). Multilayer Machine Learning-Based Intrusion Detection System. In: Hassanien, A., Kim, TH., Kacprzyk, J., Awad, A. (eds) Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations. Intelligent Systems Reference Library, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43616-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43616-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43615-8

  • Online ISBN: 978-3-662-43616-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics