Abstract
We construct an algorithm to investigate numerically non-symmetric solitary wave-like solutions of an ordinary nonlinear differential equation. We reformulate the bifurcation problem, introducing a new parameter; and in such a way we expel the trivial solution of the original problem. The Method of Variational Imbedding (MVI) is used for solving the inverse problem. We illustrate the approach by comparing the numerical solution with a known exact solution of the Boussinesq equation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boussinesq, J.: Theorie de l’intumescence liquide appelee onde solitaire ou de translation se propageant dans un canal rectangulare. C. R. Acad. Sci. 72, 755–759 (1871)
Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett 71(11), 1661–1664 (1993)
Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J. Bifurcat. Chaos 15(2), 557–565 (2005)
Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ. 217, 393–430 (2005)
Russell, J.S.: Report on waves. 14th Meeting of the British Association Report, York (1844)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marinov, T.T., Marinova, R. (2014). Soliton Solutions as Inverse Problem for Coefficient Identification. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2013. Lecture Notes in Computer Science(), vol 8353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43880-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-43880-0_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-43879-4
Online ISBN: 978-3-662-43880-0
eBook Packages: Computer ScienceComputer Science (R0)