Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

Homotopy continuation methods have been proved to be an efficient and reliable class of numerical methods for solving systems of polynomial equations which occur frequently in various fields of mathematics, science, and engineering. Based on the successful software package Hom4PS-2.0 for solving such polynomial systems, Hom4PS-3 has a new fully modular design which allows it to be easily extended. It implements many different numerical homotopy methods including the Polyhedral Homotopy continuation method. Furthermore, it is capable of carrying out computation in parallel on a wide range of hardware architectures including multi-core systems, computer clusters, distributed environments, and GPUs with great efficiency and scalability. Designed to be user-friendly, it includes interfaces to a variety of existing mathematical software and programming languages such as Python, Ruby, Octave, Sage and Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allgower, E., Georg, K.: Introduction to numerical continuation methods, vol. 45. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  2. Attardi, G., Traverso, C.: The PoSSo library for polynomial system solving. In: Proc. of AIHENP 1995 (1995)

    Google Scholar 

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  4. Bernshtein, D.N.: The number of roots of a system of equations. Functional Analysis and its Applications 9(3), 183–185 (1975)

    Article  Google Scholar 

  5. Chen, T.R., Lee, T.L., Li, T.Y.: Hom4PS-3: an numerical solver for polynomial systems using homotopy continuation methods, http://www.hom4ps3.org

  6. Drexler, F.-J.: Eine methode zur berechnung sämtlicher lösungen von polynomgleichungssystemen. Numerische Mathematik 29(1), 45–58 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garcia, C.B., Zangwill, W.I.: Finding all solutions to polynomial systems and other systems of equations. Mathematical Programming 16(1), 159–176 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM–a polyhedral homotopy continuation method for polynomial systems. Computing 73(1), 57–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Mathematics of Computation 64(212), 1541–1555 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2), 109–133 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0 para: Parallelization of HOM4PS-2.0 for solving polynomial systems. Parallel Computing 35(4), 226–238 (2009)

    Article  MathSciNet  Google Scholar 

  12. Leykin, A.: NAG4M2: Numerical algebraic geometry for Macaulay2, http://people.math.gatech.edu/~aleykin3/NAG4M2/

  13. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis, vol. 11, pp. 209–304. North-Holland (2003)

    Google Scholar 

  14. Li, T.Y., Sauer, T., Yorke, J.: The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations. SIAM Journal on Numerical Analysis, 1241–1251 (1989)

    Google Scholar 

  15. Li, T.Y., Wang, X.: The BKK root count in ℂn. Mathematics of Computation of the American Mathematical Society 65(216), 1477–1484 (1996)

    Article  MATH  Google Scholar 

  16. Morgan, A.P.: Solving polynomial systems using continuation for engineering and scientific problems. Classics in Applied Mathematics, vol. 57. Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  17. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Applied Mathematics and Computation 29(2), 123–160 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sommese, A.J., Wampler, C.W.: The Numerical solution of systems of polynomials arising in engineering and science. World Scientific Pub. Co. Inc. (2005)

    Google Scholar 

  19. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software (TOMS) 25(2), 251–276 (1999)

    Article  MATH  Google Scholar 

  20. Watson, L.T., Billups, S.C., Morgan, A.P.: Algorithm 652: Hompack: A suite of codes for globally convergent homotopy algorithms. ACM Transactions on Mathematical Software (TOMS) 13(3), 281–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, T., Lee, TL., Li, TY. (2014). Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics