Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Implementation Method of Boolean Gröbner Bases and Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

We study an implementation method to compute Boolean Gröbner bases introduced in our previous work [15] in more detail. We extend our method for computing comprehensive Boolean Gröbner bases with a technique introduced in [10]. Our work has been implemented on the computer algebra system Risa/Asir. It enables us to do our recent work of a non-trivial application of Boolean Gröbner bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2 - A computer algebra system for polynomial computations (2010), http://www.singular.uni-kl.de/

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997), http://magma.maths.usyd.edu.au/magma/

    Article  MATH  MathSciNet  Google Scholar 

  3. Brickenstein, M., Dreyer, A.: A framework for Gröbner-basis computations with Boolean polynomials. J. Symbolic Comput. 44(9), 1326–1345 (2009), http://polybori.sourceforge.net/ (PolyBoRi Polynomials over Boolean Rings)

  4. Noro, M., et al.: A Computer Algebra System Risa/Asir (2009), http://www.math.kobe-u.ac.jp/Asir/asir.html

  5. Sakai, K., Sato, Y.: Boolean Gröbner bases. ICOT Technical Memorandum 488 (1988)

    Google Scholar 

  6. Sakai, K., Sato, Y., Menju, S.: Boolean Gröbner bases (revised). ICOT Technical Report 613 (1991)

    Google Scholar 

  7. Sato, Y.: Set Constraint Solvers (Prolog Version) (1996), http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-95-E.html ; Weispfenning, V.: Gröbner Bases in polynomial ideals over commutative regular rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 336–347. Springer, Heidelberg (1989)

  8. Sato, Y.: Set Constraint Solvers (KLIC Version) (1998), http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-98-E.html

  9. Sato, Y., Inoue, S.: On the Construction of Comprehensive Boolean Gröbner Bases. In: Proceedings of the 7th Asian Symposium on Computer Mathematics (ASCM 2005), pp. 145–148 (2005)

    Google Scholar 

  10. Sato, Y., Nagai, A., Inoue, S.: On the computation of elimination ideals of boolean polynomial rings. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 334–348. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Inoue, S.: On the Computation of Comprehensive Boolean Gröbner Bases. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 130–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Rudeanu, S.: Boolean functions and equations. North-Holland Publishing Co., American Elsevier Publishing Co., Inc., Amsterdam, New York (1974)

    Google Scholar 

  13. Sato, Y., et al.: Boolean Gröbner bases. J. Symbolic Comput. 46, 622–632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Inoue, S.: BGSet Boolean Gröebner bases for Sets (2009), http://www.mi.kagu.tus.ac.jp/~inoue/BGSet/

  15. Inoue, S., Nagai, A.: On the implementation of Boolean Gröbner bases. In: Proceedings of the Joint Conference of ASCM 2009 and MACIS 2009. COE Lect. Note, vol. 22, pp. 58–62. Kyushu Univ. Fac. Math. (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagai, A., Inoue, S. (2014). An Implementation Method of Boolean Gröbner Bases and Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics