Abstract
We study an implementation method to compute Boolean Gröbner bases introduced in our previous work [15] in more detail. We extend our method for computing comprehensive Boolean Gröbner bases with a technique introduced in [10]. Our work has been implemented on the computer algebra system Risa/Asir. It enables us to do our recent work of a non-trivial application of Boolean Gröbner bases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2 - A computer algebra system for polynomial computations (2010), http://www.singular.uni-kl.de/
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997), http://magma.maths.usyd.edu.au/magma/
Brickenstein, M., Dreyer, A.: A framework for Gröbner-basis computations with Boolean polynomials. J. Symbolic Comput. 44(9), 1326–1345 (2009), http://polybori.sourceforge.net/ (PolyBoRi Polynomials over Boolean Rings)
Noro, M., et al.: A Computer Algebra System Risa/Asir (2009), http://www.math.kobe-u.ac.jp/Asir/asir.html
Sakai, K., Sato, Y.: Boolean Gröbner bases. ICOT Technical Memorandum 488 (1988)
Sakai, K., Sato, Y., Menju, S.: Boolean Gröbner bases (revised). ICOT Technical Report 613 (1991)
Sato, Y.: Set Constraint Solvers (Prolog Version) (1996), http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-95-E.html ; Weispfenning, V.: Gröbner Bases in polynomial ideals over commutative regular rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378, pp. 336–347. Springer, Heidelberg (1989)
Sato, Y.: Set Constraint Solvers (KLIC Version) (1998), http://www.jipdec.or.jp/archives/icot/ARCHIVE/Museum/FUNDING/funding-98-E.html
Sato, Y., Inoue, S.: On the Construction of Comprehensive Boolean Gröbner Bases. In: Proceedings of the 7th Asian Symposium on Computer Mathematics (ASCM 2005), pp. 145–148 (2005)
Sato, Y., Nagai, A., Inoue, S.: On the computation of elimination ideals of boolean polynomial rings. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 334–348. Springer, Heidelberg (2008)
Inoue, S.: On the Computation of Comprehensive Boolean Gröbner Bases. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 130–141. Springer, Heidelberg (2009)
Rudeanu, S.: Boolean functions and equations. North-Holland Publishing Co., American Elsevier Publishing Co., Inc., Amsterdam, New York (1974)
Sato, Y., et al.: Boolean Gröbner bases. J. Symbolic Comput. 46, 622–632 (2011)
Inoue, S.: BGSet Boolean Gröebner bases for Sets (2009), http://www.mi.kagu.tus.ac.jp/~inoue/BGSet/
Inoue, S., Nagai, A.: On the implementation of Boolean Gröbner bases. In: Proceedings of the Joint Conference of ASCM 2009 and MACIS 2009. COE Lect. Note, vol. 22, pp. 58–62. Kyushu Univ. Fac. Math. (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nagai, A., Inoue, S. (2014). An Implementation Method of Boolean Gröbner Bases and Comprehensive Boolean Gröbner Bases on General Computer Algebra Systems. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_80
Download citation
DOI: https://doi.org/10.1007/978-3-662-44199-2_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44198-5
Online ISBN: 978-3-662-44199-2
eBook Packages: Computer ScienceComputer Science (R0)