Abstract
Distance metric learning has been a major research topic in recent times. Usually, the problem is formulated as finding a Mahalanobis-like metric matrix that satisfies a set of constraints as much as possible. Different ways to introduce these constraints and to effectively formulate and solve the optimization problem have been proposed. In this work, we start with one of these formulations that leads to a convex optimization problem and generalize it in order to increase the efficiency by appropriately selecting the set of constraints. Moreover, the original criterion is expressed in terms of a reduced set of representatives that is learnt together with the metric. This leads to further improvements not only in efficiency but also in the quality of the obtained metrics.
This work has been partially funded by FEDER and Spanish MEC through projects TIN2009-14205-C04-03, TIN2011-29221-C03-02 and Consolider Ingenio 2010 CSD2007-00018.
Chapter PDF
Similar content being viewed by others
References
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley and Sons (2001)
Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press (1990)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)
Chen, L., Liao, H.M., Ko, M., Lin, J., Yu, G.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33, 1713–1726 (2000)
Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 4–13 (2005)
Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.J.: Distance metric learning with application to clustering with side-information. In: NIPS, pp. 505–512 (2002)
Paredes, R., Vidal, E.: Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1100–1110 (2006)
Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation. IEEE Trans. Pattern Anal. Mach. Intell. 30, 451–462 (2008)
Kulis, B.: Metric learning: A survey. Foundations and Trends in Machine Learning 5, 287–364 (2013)
Globerson, A., Roweis, S.: Metric learning by collapsing classes. Neural Information Processing Systems (NIPS 2005) 18, 451–458 (2005)
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML, pp. 209–216 (2007)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research 10, 207–244 (2009)
Wang, J., Woznica, A., Kalousis, A.: Learning neighborhoods for metric learning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 223–236. Springer, Heidelberg (2012)
Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern Recognition Letters 15, 9–17 (1994)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Perez-Suay, A., Ferri, F.: Scaling up a metric learning algorithm for image recognition and representation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 592–601. Springer, Heidelberg (2008)
Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
Duin, R.P.W.: Prtools - version 3.0 - a matlab toolbox for pattern recognition. In: Proc. of SPIE, p. 1331 (2000)
Martinez, A., Benavente, R.: The AR face database. Technical Report 24, Computer Vision Center, Barcelona (1998)
van der Maaten, L., Postma, E., , van den Herik, H.: Dimensionality reduction: A comparative review. Technical report, Tilburg University, TiCC-TR 2009-005 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perez-Suay, A., Ferri, F.J., Arevalillo-Herráez, M., Albert, J.V. (2014). About Combining Metric Learning and Prototype Generation. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2014. Lecture Notes in Computer Science, vol 8621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44415-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-662-44415-3_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44414-6
Online ISBN: 978-3-662-44415-3
eBook Packages: Computer ScienceComputer Science (R0)