Abstract
In a surprising recent result, Gupta et al. [GKKS13b] have proved that over ℚ any n O(1)-variate and n-degree polynomial in VP can also be computed by a depth three ∑ ∏ ∑ circuit of size \(2^{O(\sqrt{n} \log^{3/2}n)}\) . Over fixed-size finite fields, Grigoriev and Karpinski proved that any ∑ ∏ ∑ circuit that computes the determinant (or the permanent) polynomial of a n×n matrix must be of size 2Ω(n). In this paper, for an explicit polynomial in VP (over fixed-size finite fields), we prove that any ∑ ∏ ∑ circuit computing it must be of size 2Ω(nlogn). The explicit polynomial that we consider is the iterated matrix multiplication polynomial of n generic matrices of size n×n. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the n O(1)-variate and n-degree polynomials in VP by depth 3 circuits of size 2o(nlogn). The result of [GK98] can only rule out such a possibility for ∑ ∏ ∑ circuits of size 2o(n).
We also give an example of an explicit polynomial (NW n,ε (X)) in VNP (which is not known to be in VP), for which any ∑ ∏ ∑ circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn). The polynomial we consider is constructed from the combinatorial design of Nisan and Wigderson [NW94], and is closely related to the polynomials considered in many recent papers where strong depth 4 circuit size lower bounds were shown [KSS13,KLSS14,KS13b,KS14].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N.: Combinatorial nullstellensatz. Combinatorics, Probability and Computing 8 (1999)
Agrawal, M.: V Vinay. Arithmetic circuits: A chasm at depth four. In: Proceedings-Annual Symposium on Foundations of Computer Science, pp. 67–75. IEEE (2008)
Chillara, S.: (2014), http://www.cmi.ac.in/~suryajith/Depth3.pdf
Chillara, S., Mukhopadhyay, P.: Depth-4 lower bounds, determinantal complexity: A unified approach. In: STACS, pp. 239–250 (2014)
Feige, U.: The permanent and the determinant (2009)
Fischer, I.: Sums of like powers of multivariate linear forms. Mathematics Magazine 67(1), 59–61 (1994)
Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for depth 4 formulas computing iterated matrix multiplication. In: To Appear in the proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 100 (2013)
Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic circuits. In: STOC, pp. 577–582 (1998)
Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the chasm at depth four. In: IEEE Conference on Computational Complexity, pp. 65–73 (2013)
Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: A chasm at depth three. In: FOCS, pp. 578–587 (2013)
Kayal, N., Limaye, N., Saha, C., Srinivasan, S.: An exponential lower bound for homogeneous depth four arithmetic formulas. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 21, p. 5 (2014)
Kumar, M., Maheshwari, G., Sarma M.N., J.: Arithmetic circuit lower bounds via maxRank. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 661–672. Springer, Heidelberg (2013)
Koiran, P.: Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci. 448, 56–65 (2012)
Kumar, M., Saraf, S.: The limits of depth reduction for arithmetic formulas: It’s all about the top fan-in. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 153 (2013)
Kumar, M., Saraf, S.: Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 751–762. Springer, Heidelberg (2014)
Kumar, M., Saraf, S.: On the power of homogeneous depth 4 arithmetic circuits. Electronic Colloquium on Computational Complexity (ECCC) 21, 45 (2014)
Kayal, N., Saha, C., Saptharishi, R.: A super-polynomial lower bound for regular arithmetic formulas. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 91 (2013)
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete mathematics 13(4), 383–390 (1975)
Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)
Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity 6(3), 217–234 (1997)
Saptharishi, R.: Personal communication (2013)
Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg (2008)
Shpilka, A., Wigderson, A.: Depth-3 arithmetic circuits over fields of characteristic zero. Computational Complexity 10(1), 1–27 (2001)
Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chillara, S., Mukhopadhyay, P. (2014). On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-662-44465-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44464-1
Online ISBN: 978-3-662-44465-8
eBook Packages: Computer ScienceComputer Science (R0)