Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1193 Accesses

Abstract

In a surprising recent result, Gupta et al. [GKKS13b] have proved that over ℚ any n O(1)-variate and n-degree polynomial in VP can also be computed by a depth three ∑ ∏ ∑ circuit of size \(2^{O(\sqrt{n} \log^{3/2}n)}\) . Over fixed-size finite fields, Grigoriev and Karpinski proved that any ∑ ∏ ∑ circuit that computes the determinant (or the permanent) polynomial of a n×n matrix must be of size 2Ω(n). In this paper, for an explicit polynomial in VP (over fixed-size finite fields), we prove that any ∑ ∏ ∑ circuit computing it must be of size 2Ω(nlogn). The explicit polynomial that we consider is the iterated matrix multiplication polynomial of n generic matrices of size n×n. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the n O(1)-variate and n-degree polynomials in VP by depth 3 circuits of size 2o(nlogn). The result of [GK98] can only rule out such a possibility for ∑ ∏ ∑ circuits of size 2o(n).

We also give an example of an explicit polynomial (NW n,ε (X)) in VNP (which is not known to be in VP), for which any ∑ ∏ ∑ circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn). The polynomial we consider is constructed from the combinatorial design of Nisan and Wigderson [NW94], and is closely related to the polynomials considered in many recent papers where strong depth 4 circuit size lower bounds were shown [KSS13,KLSS14,KS13b,KS14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N.: Combinatorial nullstellensatz. Combinatorics, Probability and Computing 8 (1999)

    Google Scholar 

  2. Agrawal, M.: V Vinay. Arithmetic circuits: A chasm at depth four. In: Proceedings-Annual Symposium on Foundations of Computer Science, pp. 67–75. IEEE (2008)

    Google Scholar 

  3. Chillara, S.: (2014), http://www.cmi.ac.in/~suryajith/Depth3.pdf

  4. Chillara, S., Mukhopadhyay, P.: Depth-4 lower bounds, determinantal complexity: A unified approach. In: STACS, pp. 239–250 (2014)

    Google Scholar 

  5. Feige, U.: The permanent and the determinant (2009)

    Google Scholar 

  6. Fischer, I.: Sums of like powers of multivariate linear forms. Mathematics Magazine 67(1), 59–61 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for depth 4 formulas computing iterated matrix multiplication. In: To Appear in the proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 100 (2013)

    Google Scholar 

  8. Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic circuits. In: STOC, pp. 577–582 (1998)

    Google Scholar 

  9. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the chasm at depth four. In: IEEE Conference on Computational Complexity, pp. 65–73 (2013)

    Google Scholar 

  10. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: A chasm at depth three. In: FOCS, pp. 578–587 (2013)

    Google Scholar 

  11. Kayal, N., Limaye, N., Saha, C., Srinivasan, S.: An exponential lower bound for homogeneous depth four arithmetic formulas. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 21, p. 5 (2014)

    Google Scholar 

  12. Kumar, M., Maheshwari, G., Sarma M.N., J.: Arithmetic circuit lower bounds via maxRank. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 661–672. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Koiran, P.: Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci. 448, 56–65 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kumar, M., Saraf, S.: The limits of depth reduction for arithmetic formulas: It’s all about the top fan-in. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 153 (2013)

    Google Scholar 

  15. Kumar, M., Saraf, S.: Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 751–762. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Kumar, M., Saraf, S.: On the power of homogeneous depth 4 arithmetic circuits. Electronic Colloquium on Computational Complexity (ECCC) 21, 45 (2014)

    Google Scholar 

  17. Kayal, N., Saha, C., Saptharishi, R.: A super-polynomial lower bound for regular arithmetic formulas. In: To appear in the Proceedings of STOC 2014. Electronic Colloquium on Computational Complexity (ECCC), vol. 20, p. 91 (2013)

    Google Scholar 

  18. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete mathematics 13(4), 383–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity 6(3), 217–234 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saptharishi, R.: Personal communication (2013)

    Google Scholar 

  22. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Shpilka, A., Wigderson, A.: Depth-3 arithmetic circuits over fields of characteristic zero. Computational Complexity 10(1), 1–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chillara, S., Mukhopadhyay, P. (2014). On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics