Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimum Bisection Is NP-hard on Unit Disk Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1227 Accesses

Abstract

In this paper we prove that the Min-Bisection problem is NP-hard on unit disk graphs, thus solving a longstanding open question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)

    Google Scholar 

  2. Bichot, C.-E., Siarry, P. (eds.): Graph Partitioning. Wiley (2011)

    Google Scholar 

  3. Bradonjic, M., Elsässer, R., Friedrich, T., Sauerwald, T., Stauffer, A.: Efficient broadcast on random geometric graphs. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1412–1421 (2010)

    Google Scholar 

  4. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computational Geometry 9(1-2), 3–24 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Bui, T., Chaudhuri, S., Leighton, T., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7, 171–191 (1987)

    MathSciNet  Google Scholar 

  6. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: Proceedings of the 46th Annual Symposium on the Theory of Computing, STOC (to appear, 2014)

    Google Scholar 

  7. Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Exact combinatorial branch-and-bound for graph bisection. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX), pp. 30–44 (2012)

    Google Scholar 

  8. Díaz, J., Penrose, M.D., Petit, J., Serna, M.J.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39(1), 78–116 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)

    Google Scholar 

  10. Feldmann, A.E., Widmayer, P.: An \(\mathcal{O}(n^4)\) time algorithm to compute the bisection width of solid grid graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 143–154. Springer, Heidelberg (2011)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman & Co. (1979)

    Google Scholar 

  12. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of Information in Communication Networks - Broadcasting, Gossiping, Leader Election, and Fault-Tolerance. In: Texts in Theoretical Computer Science. An EATCS Series, Springer, Heidelberg (2005)

    Google Scholar 

  13. Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approximation schemes for Max-Bisection on planar and geometric graphs. SIAM Journal on Computing 35(1), 110–119 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Kahruman-Anderoglu, S.: Optimization in geometric graphs: Complexity and approximation. PhD thesis, Texas A & M University (2009)

    Google Scholar 

  15. Karpinski, M.: Approximability of the minimum bisection problem: An algorithmic challenge. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 59–67. Springer, Heidelberg (2002)

    Google Scholar 

  16. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2), 291–307 (1970)

    MATH  Google Scholar 

  17. Kratochvíl, J.: Intersection graphs of noncrossing arc-connected sets in the plane. In: Proceedings of the 4th Int. Symp. on Graph Drawing (GD), pp. 257–270 (1996)

    Google Scholar 

  18. MacGregor, R.: On partitioning a graph: A theoretical and empirical study. PhD thesis, University of California, Berkeley (1978)

    Google Scholar 

  19. Papadimitriou, C.H., Sideri, M.: The bisection width of grid graphs. Mathematical Systems Theory 29(2), 97–110 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 255–264 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Mertzios, G.B. (2014). Minimum Bisection Is NP-hard on Unit Disk Graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics