Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Betweenness Centrality – Incremental and Faster

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

Abstract

We present an incremental algorithm that updates the betweenness centrality (BC) score of all vertices in a graph G when a new edge is added to G, or the weight of an existing edge is reduced. Our incremental algorithm runs in O(v * · n) time, where v * is bounded by m *, the number of edges that lie on a shortest path in G. We achieve the same bound for the more general incremental vertex update problem. Even for a single edge update, our incremental algorithm is the first algorithm that is provably faster on sparse graphs than recomputing with the well-known static Brandes algorithm. It is also likely to be much faster than Brandes on dense graphs since m * is often close to linear in n. Our incremental algorithm is very simple, and we give an efficient cache-oblivious implementation that incurs O(n · sort(v *)) cache misses, where sort is a well-known measure for caching efficiency.

This work was supported in part by NSF grants CCF-0830737 and CCF-1320675.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An optimal cache-oblivious priority queue and its application to graph algorithms. SIAM J. Comput. 36(6), 1672–1695 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 124–137. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Brandes, U.: A faster algorithm for betweenness centrality. J. of Mathematical Sociology 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  4. Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone call networks. Social Network Analysis and Mining 3(1), 15–33 (2013)

    Article  Google Scholar 

  5. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM 51(6), 968–992 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  7. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: Proc. ALENEX, pp. 90–100 (2008)

    Google Scholar 

  9. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. the National Academy of Sciences 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goel, K., Singh, R.R., Iyengar, S., Sukrit: A faster algorithm to update betweenness centrality after node alteration. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 170–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Goh, K.-I., Oh, E., Kahng, B., Kim, D.: Betweenness centrality correlation in social networks. Phys. Rev. E 67, 017101 (2003)

    Article  Google Scholar 

  12. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: Proc. PASSAT, pp. 11–20 (2012)

    Google Scholar 

  13. Hassin, R., Zemel, E.: On shortest paths in graphs with random weights. Mathematics of Operations Research 10(4), 557–564 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)

    Article  Google Scholar 

  15. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM J. Comput. 22(6), 1199–1217 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proc. ASONAM, pp. 33–40. ACM (2013)

    Google Scholar 

  17. Kitsak, M., Havlin, S., Paul, G., Riccaboni, M., Pammolli, F., Stanley, H.E.: Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Phys. Rev. E 75, 056115 (2007)

    Article  Google Scholar 

  18. Kourtellis, N., Iamnitchi, A.: Leveraging peer centrality in the design of socially-informed peer-to-peer systems. CoRR, abs/1210.6052 (2012)

    Google Scholar 

  19. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality in evolving graphs. CoRR, abs/1401.6981 (2014)

    Google Scholar 

  20. Krebs, V.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)

    Google Scholar 

  21. Lee, M.-J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.-W.: Qube: a quick algorithm for updating betweenness centrality. In: Proc. WWW, pp. 351–360 (2012)

    Google Scholar 

  22. Leydesdorff, L.: Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. J. Am. Soc. Inf. Sci. Technol. 58(9), 1303–1319 (2007)

    Article  Google Scholar 

  23. Luby, M., Ragde, P.: A bidirectional shortest-path algorithm with good average-case behavior. Algorithmica 4(1-4), 551–567 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarría-Miranda, D.G.: A faster parallel algorithm and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets. In: Proc. IPDPS, pp. 1–8 (2009)

    Google Scholar 

  25. Maglaras, L., Katsaros, D.: New measures for characterizing the significance of nodes in wireless ad hoc networks via localized path-based neighborhood analysis. Social Network Analysis and Mining 2(2), 97–106 (2012)

    Article  Google Scholar 

  26. McGeoch, C.C.: All-pairs shortest paths and the essential subgraph. Algorithmica 13(5), 426–441 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–735. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Nasre, M., Pontecorvi, M., Ramachandran, V.: Decremental and fully dynamic all pairs all shortest paths and betweenness centrality. Manuscript (2014)

    Google Scholar 

  29. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312(1), 47–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pinney, J.W., McConkey, G.A., Westhead, D.R.: Decomposition of biological networks using betweenness centrality. In: Proc. RECOMB. Poster session (2005)

    Google Scholar 

  32. Puzis, R., Altshuler, Y., Elovici, Y., Bekhor, S., Shiftan, Y., Pentland, A.S.: Augmented betweenness centrality for environmentally aware traffic monitoring in transportation networks. J. of Intell. Transpor. Syst. 17(1), 91–105 (2013)

    Article  Google Scholar 

  33. Ramírez: The social networks of academic performance in a student context of poverty in Mexico. Social Networks 26(2), 175–188 (2004)

    Google Scholar 

  34. Singh, B.K., Gupte, N.: Congestion and decongestion in a communication network. Phys. Rev. E 71, 055103 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nasre, M., Pontecorvi, M., Ramachandran, V. (2014). Betweenness Centrality – Incremental and Faster. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics