Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Synchronization in Markov Decision Processes

  • Conference paper
CONCUR 2014 – Concurrency Theory (CONCUR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8704))

Included in the following conference series:

  • 824 Accesses

Abstract

We consider synchronizing properties of Markov decision processes (MDP), viewed as generators of sequences of probability distributions over states. A probability distribution is p-synchronizing if the probability mass is at least p in some state, and a sequence of probability distributions is weakly p-synchronizing, or strongly p-synchronizing if respectively infinitely many, or all but finitely many distributions in the sequence are p-synchronizing.

For each synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a sequence that is, for all ε > 0, a (1-ε)-synchronizing sequence; (iii) limit-sure winning if for all ε > 0, there is a strategy that produces a (1-ε)-synchronizing sequence.

For each synchronizing and winning mode, we consider the problem of deciding whether an MDP is winning, and we establish matching upper and lower complexity bounds of the problems, as well as the optimal memory requirement for winning strategies: (a) for all winning modes, we show that the problems are PSPACE-complete for weak synchronization, and PTIME-complete for strong synchronization; (b) we show that for weak synchronization, exponential memory is sufficient and may be necessary for sure winning, and infinite memory is necessary for almost-sure winning; for strong synchronization, linear-size memory is sufficient and may be necessary in all modes; (c) we show a robustness result that the almost-sure and limit-sure winning modes coincide for both weak and strong synchronization.

This work was partially supported by the Belgian Fonds National de la Recherche Scientifique (FNRS), and by the PICS project Quaverif funded by the French Centre National de la Recherche Scientifique (CNRS).

Fuller version: [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ArXiv CoRR (2014), http://arxiv.org/abs/1402.2840 (Full version)

  2. Agrawal, M., Akshay, S., Genest, B., Thiagarajan, P.S.: Approximate verification of the symbolic dynamics of Markov chains. In: LICS, pp. 55–64. IEEE (2012)

    Google Scholar 

  3. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proc. of LICS, pp. 141–154 (2000)

    Google Scholar 

  4. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Comput. Sci. 386(3), 188–217 (2007)

    Article  MATH  Google Scholar 

  5. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the solvability of anonymous partial grids exploration by mobile robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Burkhard, H.D.: Zum längenproblem homogener experimente an determinierten und nicht-deterministischen automaten. Elektronische Informationsverarbeitung und Kybernetik 12(6), 301–306 (1976)

    MATH  MathSciNet  Google Scholar 

  8. Cerný, J.: Poznámka k. homogénnym experimentom s konecnymi automatmi. Matematicko-fyzikálny Časopis 14(3), 208–216 (1964)

    MATH  Google Scholar 

  9. Chadha, R., Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Model checking MDPs with a unique compact invariant set of distributions. In: QEST, pp. 121–130. IEEE (2011)

    Google Scholar 

  10. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doyen, L., Massart, T., Shirmohammadi, M.: Infinite synchronizing words for probabilistic automata. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 278–289. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Doyen, L., Massart, T., Shirmohammadi, M.: Synchronizing objectives for Markov decision processes. In: Proc. of iWIGP. EPTCS, vol. 50, pp. 61–75 (2011)

    Google Scholar 

  13. Doyen, L., Massart, T., Shirmohammadi, M.: Infinite synchronizing words for probabilistic automata (Erratum). CoRR abs/1206.0995 (2012)

    Google Scholar 

  14. Doyen, L., Massart, T., Shirmohammadi, M.: Limit synchronization in Markov decision processes. In: Muscholl, A. (ed.) FOSSACS 2014. LNCS, vol. 8412, pp. 58–72. Springer, Heidelberg (2014)

    Google Scholar 

  15. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1997)

    Google Scholar 

  16. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 527–538. Springer, Heidelberg (2010)

    Google Scholar 

  17. Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybern. 14(1), 105–115 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Kfoury, D.: Synchronizing sequences for probabilistic automata. Studies in Applied Mathematics 29, 101–103 (1970)

    MathSciNet  Google Scholar 

  20. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about MDPs as transformers of probability distributions. In: QEST, pp. 199–208. IEEE (2010)

    Google Scholar 

  21. Martyugin, P.: Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata. Theory Comput. Syst. 54(2), 293–304 (2014)

    Article  MathSciNet  Google Scholar 

  22. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. of FOCS, pp. 327–338. IEEE Computer Society (1985)

    Google Scholar 

  23. Volkov, M.V.: Synchronizing automata and the Cerny conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doyen, L., Massart, T., Shirmohammadi, M. (2014). Robust Synchronization in Markov Decision Processes. In: Baldan, P., Gorla, D. (eds) CONCUR 2014 – Concurrency Theory. CONCUR 2014. Lecture Notes in Computer Science, vol 8704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44584-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44584-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44583-9

  • Online ISBN: 978-3-662-44584-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics