Abstract
We study the following geometric representation problem: Given a graph whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in the plane such that two rectangles touch if the graph contains an edge between them. This problem is called Contact Representation of Word Networks (Crown) since it formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. Crown is known to be NP-hard, and there are approximation algorithms for certain graph classes for the optimization version, Max-Crown, in which realizing each desired adjacency yields a certain profit.
We show that the problem is APX-complete on bipartite graphs of bounded maximum degree. We present the first O(1)-approximation algorithm for the general case, when the input is a complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is necessarily planar, we consider several planar graph classes (stars, trees, outerplanar, and planar graphs), improving upon the known results. For some graph classes, we also describe improvements in the unweighted case, where each adjacency yields the same profit.
The work of M. A. Bekos is implemented within the framework of the Action “Supporting Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. Ph. Kindermann and A. Wolff acknowledge support by the ESF EuroGIGA project GraDR. S. Kobourov and S. Pupyrev are supported by NSF grants CCF-1115971 and DEB 1053573.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barth, L., Fabrikant, S.I., Kobourov, S.G., Lubiw, A., Nöllenburg, M., Okamoto, Y., Pupyrev, S., Squarcella, C., Ueckerdt, T., Wolff, A.: Semantic word cloud representations: Hardness and approximation algorithms. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 514–525. Springer, Heidelberg (2014)
Barth, L., Kobourov, S.G., Pupyrev, S.: Experimental comparison of semantic word clouds. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 247–258. Springer, Heidelberg (2014)
Bekos, M., van Dijk, T., Fink, M., Kindermann, P., Kobourov, S.G., Pupyrev, S., Spoerhase, J., Wolff, A.: Improved approximation algorithms for box contact representations. Arxiv report (2014) arxiv.org/abs/1403.4861
Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. SIAM J. Comput. 40(6), 1587–1622 (2011)
Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008)
Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: 11th ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 213–222. SIAM (2000)
Cohen, R., Katzir, L., Raz, D.: An efficient approximation for the generalized assignment problem. Inf. Process. Lett. 100(4), 162–166 (2006)
Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., Qu, H.: Context-preserving dynamic word cloud visualization. IEEE Comput. Graph. Appl. 30(6), 42–53 (2010)
Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)
Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)
Erkan, G., Radev, D.R.: Lexrank: graph-based lexical centrality as salience in text summarization. J. Artif. Int. Res. 22(1), 457–479 (2004)
Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, Heidelberg (2013)
Fleischer, L., Goemans, M.X., Mirrokni, V., Sviridenko, M.: Tight approximation algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)
Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)
Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph Algortihms Appl. 14(1), 53–74 (2010)
Hakimi, S.L., Mitchem, J., Schmeichel, E.F.: Star arboricity of graphs. Discrete Math. 149(1-3), 93–98 (1996)
Li, H.: Word clustering and disambiguation based on co-occurrence data. J. Nat. Lang. Eng. 8(1), 25–42 (2002)
Nash-Williams, C.: Decomposition of finite graphs into forests. J. L. Math. Soc. 39, 12 (1964)
Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of planar graphs. Discrete Math. 28(3), 255–267 (1979)
Nöllenburg, M., Prutkin, R., Rutter, I.: Edge-weighted contact representations of planar graphs. J. Graph Algorithms Appl. 17(4), 441–473 (2013)
Paulovich, F.V., Toledo, F.M.B., Telles, G.P., Minghim, R., Nonato, L.G.: Semantic wordification of document collections. Comput. Graph. Forum 31(3), 1145–1153 (2012)
Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(3), 292–296 (1934)
Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with Wordle. IEEE Trans. Vis. Comput. Graph. 15(6), 1137–1144 (2009)
Wu, Y., Provan, T., Wei, F., Liu, S., Ma, K.L.: Semantic-preserving word clouds by seam carving. Comput. Graph. Forum 30(3), 741–750 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bekos, M.A. et al. (2014). Improved Approximation Algorithms for Box Contact Representations. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-44777-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44776-5
Online ISBN: 978-3-662-44777-2
eBook Packages: Computer ScienceComputer Science (R0)