Abstract
In this paper, we are interested in stitching specific types of images such as schemes, cartographies, documents or drawings that have been acquired using a scanner. Because of the size of these documents, it is not possible to make one acquisition even using large scanners. The result of the acquisition is then an image mosaic that needs to be stitched to obtain the entire image. For that purpose, we propose an adaptation of feature based methods that are not directly usable with the images we want to process. Indeed, points of interest (POIs) extraction on the entire image requires too much memory and matching are not always pertinent because of the particularity of these documents. To demonstrate the good performance of our proposition, we present quantitative and qualitative results obtained using two datasets: a set of images divided synthetically and a set of images that have been acquired manually using a scanner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Szeliski, R.: Image alignment and stitching: a tutorial. Technical report, Microsoft Research (2006)
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)
Xiong, Y., Pulli, K.: Mask based image blending approach and its applications on mobile devices. In: MIPPR’09: International Symposium on Multispectral Image Processing and Pattern Recognition (2009)
Gracias, N., Mahoor, M., Negahdaripour, S., Gleason, A.: Fast image blending using watersheds and graph cuts. Image Vis. Comput. 27, 597–607 (2009)
Xiong, Y., Pulli, K.: Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans. Consum. Electron. 56, 298–306 (2010)
Jia, J., Tang, C.K.: Image stitching using structure deformation. IEEE Trans. Pattern Anal. Mach. Intell. 30, 617–631 (2008)
Zhi, Q., Cooperstock, J.R.: Toward dynamic image mosaic generation with robustness to parallax. IEEE Trans. Image Process. 21, 366–378 (2012)
Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Heidelberg (2004)
Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 267–277. Springer, Heidelberg (2000)
Torr, P., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000)
Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: CVPR’05: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition (2005)
Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: CVPR’01: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2001)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)
Agarwala, A.: Efficient gradient-domain compositing using quadtrees. ACM Trans. Graph. 26(3), 94:1–94:5 (2007)
Kazhdan, M.M., Hoppe, H.: Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph. 27(3), 1–10 (2008)
Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for instant image cloning. ACM Trans. Graph. 28(3), 67:1–67:10 (2009)
Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH’01: Proceedings of the Conference on Computer Graphics and Interactive Techniques (2001)
Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph. 23, 294–302 (2004)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Uchiyama, H., Saito, H.: Augmenting text document by on-line learning of local arrangement of keypoints. In: ISMAR’09: IEEE International Symposium on Mixed and Augmented Reality (2009)
Vieux, R., Domenger, J.P.: Hierarchical clustering model for pixel-based classification of document images. In: ICPR’12: Proceedings of the IEEE International Conference on Pattern Recognition (2012)
Wang, Y., Phillips, I.T., Haralick, R.M.: Document zone content classification and its performance evaluation. Pattern Recogn. 39, 57–73 (2006)
Acknowledgments
The piXL project is supported by the “Fonds national pour la Société Numérique” of the French State by means of the “Programme d’Investissements d’Avenir”, and referenced under PIA-FSN2-PIXL. For more details and resources, visit http://valconum.fr/index.php/les-projets/pixl
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paulhac, L., Domenger, JP. (2014). A Stitching Method for Large Document Images. In: Lamiroy, B., Ogier, JM. (eds) Graphics Recognition. Current Trends and Challenges. GREC 2013. Lecture Notes in Computer Science(), vol 8746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44854-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-44854-0_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44853-3
Online ISBN: 978-3-662-44854-0
eBook Packages: Computer ScienceComputer Science (R0)