Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Stitching Method for Large Document Images

  • Conference paper
  • First Online:
Graphics Recognition. Current Trends and Challenges (GREC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8746))

Included in the following conference series:

  • 790 Accesses

Abstract

In this paper, we are interested in stitching specific types of images such as schemes, cartographies, documents or drawings that have been acquired using a scanner. Because of the size of these documents, it is not possible to make one acquisition even using large scanners. The result of the acquisition is then an image mosaic that needs to be stitched to obtain the entire image. For that purpose, we propose an adaptation of feature based methods that are not directly usable with the images we want to process. Indeed, points of interest (POIs) extraction on the entire image requires too much memory and matching are not always pertinent because of the particularity of these documents. To demonstrate the good performance of our proposition, we present quantitative and qualitative results obtained using two datasets: a set of images divided synthetically and a set of images that have been acquired manually using a scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szeliski, R.: Image alignment and stitching: a tutorial. Technical report, Microsoft Research (2006)

    Google Scholar 

  2. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)

    Article  Google Scholar 

  3. Xiong, Y., Pulli, K.: Mask based image blending approach and its applications on mobile devices. In: MIPPR’09: International Symposium on Multispectral Image Processing and Pattern Recognition (2009)

    Google Scholar 

  4. Gracias, N., Mahoor, M., Negahdaripour, S., Gleason, A.: Fast image blending using watersheds and graph cuts. Image Vis. Comput. 27, 597–607 (2009)

    Article  Google Scholar 

  5. Xiong, Y., Pulli, K.: Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans. Consum. Electron. 56, 298–306 (2010)

    Article  Google Scholar 

  6. Jia, J., Tang, C.K.: Image stitching using structure deformation. IEEE Trans. Pattern Anal. Mach. Intell. 30, 617–631 (2008)

    Article  Google Scholar 

  7. Zhi, Q., Cooperstock, J.R.: Toward dynamic image mosaic generation with robustness to parallax. IEEE Trans. Image Process. 21, 366–378 (2012)

    Article  MathSciNet  Google Scholar 

  8. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 267–277. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Torr, P., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Brown, M., Szeliski, R., Winder, S.: Multi-image matching using multi-scale oriented patches. In: CVPR’05: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  12. Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: CVPR’01: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  13. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  14. Agarwala, A.: Efficient gradient-domain compositing using quadtrees. ACM Trans. Graph. 26(3), 94:1–94:5 (2007)

    Article  Google Scholar 

  15. Kazhdan, M.M., Hoppe, H.: Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  16. Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D.: Coordinates for instant image cloning. ACM Trans. Graph. 28(3), 67:1–67:10 (2009)

    Article  Google Scholar 

  17. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH’01: Proceedings of the Conference on Computer Graphics and Interactive Techniques (2001)

    Google Scholar 

  18. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interactive digital photomontage. ACM Trans. Graph. 23, 294–302 (2004)

    Article  Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  20. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  21. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  22. Uchiyama, H., Saito, H.: Augmenting text document by on-line learning of local arrangement of keypoints. In: ISMAR’09: IEEE International Symposium on Mixed and Augmented Reality (2009)

    Google Scholar 

  23. Vieux, R., Domenger, J.P.: Hierarchical clustering model for pixel-based classification of document images. In: ICPR’12: Proceedings of the IEEE International Conference on Pattern Recognition (2012)

    Google Scholar 

  24. Wang, Y., Phillips, I.T., Haralick, R.M.: Document zone content classification and its performance evaluation. Pattern Recogn. 39, 57–73 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The piXL project is supported by the “Fonds national pour la Société Numérique” of the French State by means of the “Programme d’Investissements d’Avenir”, and referenced under PIA-FSN2-PIXL. For more details and resources, visit http://valconum.fr/index.php/les-projets/pixl

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Domenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paulhac, L., Domenger, JP. (2014). A Stitching Method for Large Document Images. In: Lamiroy, B., Ogier, JM. (eds) Graphics Recognition. Current Trends and Challenges. GREC 2013. Lecture Notes in Computer Science(), vol 8746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44854-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44854-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44853-3

  • Online ISBN: 978-3-662-44854-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics