Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-digit Logic Operation Using DNA Strand Displacement

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

DNA strand displacement which is an approach of dynamic nanotechnology has been widely used in constructing of molecular logic circuit, molecular automata and nanomedicine and so on. DNA strand displacement is enormous capable of implementation of logical calculation which plays a critical role in the acquirement of bio-computer. In our paper, the multi-digit full adder which is based on the reaction of DNA strand displacement is designed and has been verified by simulation of DSD (DNA strand displacement). The accuracy of simulation result further confirmed DNA strand displacement is a valid method for the research of logical bio-chemical circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Păun, G.: Membrane computing: an introduction. Springer (2002)

    Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  3. Song, T., Pan, L., Wang, J., Ibrahim, V., Subramanian, K.G., Rosni, A.: Normal Forms of Spiking Neural P Systems with Anti-Spikes. IEEE Trans. on Nanobioscience 11(4), 352–359 (2012)

    Article  Google Scholar 

  4. Song, T., Zheng, H., He, J.: Solving Vertex Cover Problem by Tissue P Systems with Cell Division. Appl. Math. Inf. Sci. 8(1), 333–337 (2014)

    Article  Google Scholar 

  5. Martın-Vide, C., Păun, G., Pazos, J., Rodrıguez-Patón, A.: Tissue P Systems. Theore. Comput. Sci. 296(2), 295–326 (2003)

    Article  MATH  Google Scholar 

  6. Yurke, B., Turberfield, A.J., Mills, A.P., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  7. Mao, C., LaBean, T.H., Reif, J.H., et al.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  8. Santini, C.C., Bath, J., Turberfield, A.J., et al.: A DNA network as an information processing system. Int. J. Mol. Sci. 13, 5125–5137 (2012)

    Article  Google Scholar 

  9. Shin, J., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  10. Lund, K., Manzo, A.J., Dabby, N., et al.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  11. Rahul, C., Jaswinder, S., Yan, L., Sherri, R., Hao, Y.: DNA Self-assembly for Nanomedicine. Adv. Drug. Deliver. Rev. 62, 617–625 (2010)

    Article  Google Scholar 

  12. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  13. Lederman, H., Macdonald, J., Stephanovic, D., Stojanovic, M.N.: Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45, 1194–1199 (2006)

    Article  Google Scholar 

  14. Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: Scalable, Time-Responsive, Digital, Energy-Efficient Molecular Circuits using DNA Strand Displacement. DNA Computing and Molecular Programming. Springer (2011)

    Google Scholar 

  15. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface. 8, 1281–1297 (2011)

    Article  Google Scholar 

  16. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  17. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

  18. Zhang, C., Ma, L.N., Dong, Y.F., et al.: Molecular logic computing model based on DNA self-assembly strand branch migration. Chinese. Sci. Bull. 58, 32–38 (2013)

    Article  Google Scholar 

  19. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  20. Song, T., Pan, L., Wang, J., Ibrahim, V., Subramanian, K.G., Rosni, A.: Normal Forms of Spiking Neural P Systems with Anti-Spikes. IEEE Trans. on Nanobioscience 11(4), 352–359 (2012)

    Article  Google Scholar 

  21. Song, T., Zheng, H., He, J.: Solving Vertex Cover Problem by Tissue P Systems with Cell Division. Appl. Math. Inf. Sci. 8(1), 333–337 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Tian, G., Wang, Y., Wang, Y., Cui, G. (2014). Multi-digit Logic Operation Using DNA Strand Displacement. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics