Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Genetic Algorithm with OpenCL for Traveling Salesman Problem

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

In the past few years, CUDA and OpenCL are developed in full use of the GPU, which is a significant topic in high performance computing. In this paper, we have proposed an implementation of the genetic algorithm for the traveling salesman problem on the parallel OpenCL architecture. Population initialization, fitness evaluation, selection, crossover and mutation operators are implemented on the GPU by using individual to thread mapping. Moreover we have evaluated our algorithm using a set of benchmark instances from the TSPLIB library. The comparison results shows that GPU computations provide better performance than traditional CPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Papadimitriou, C.H.: The Euclidean Traveling Salesman Problem is NP-complete. Theoretical Computer Science 4(3), 237–244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Grotschel, M., Holland, O.: Solution of Large-Scale Travelling Salesman Problems. Mathematical Programming 51(2), 141–202 (1991)

    Article  MathSciNet  Google Scholar 

  3. Hernández-Pérez, H., Salazar-González, J.: A Branch-and-Cut Algorithm for a Traveling Salesman Problem with Pickup and Delivery. Discrete Applied Mathematics 145(1), 126–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anuraj, M., Remya, G.: A Parallel Implementation of Ant Colony Optimization for TSP based on MapReduce Framework. International Journal of Computer Applications 88(8), 9–12 (2014)

    Article  Google Scholar 

  5. Klaus, M.: Simulated Annealing versus Metropolis for a TSP instance. Information Processing Letters 104(6), 216–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, X., Song, T., Wang, Z.: MRPGA: Motif Detecting by Modified Random Projection Strategy and Genetic Algorithm. J. Comput. Theor. Nanosci. 10, 1209–1214 (2013)

    Article  Google Scholar 

  7. He, Y., Qiu, Y., Liu, G., Lei, K.: A Parallel Adaptive Tabu Search Approach for Traveling Salesman Problems. In: Proceedings of IEEE International Conference on Natural Language Processing and Knowledge Engineering, pp. 796–801 (2005)

    Google Scholar 

  8. Hofmann, J., Limmer, S., Fey, D.: Performance Investigations of Genetic Algorithms on Graphics Cards. Swarm and Evolutionary Computation 12, 33–47 (2013)

    Article  Google Scholar 

  9. Lan, Q., Xun, C., Wen, M.: Improving Performance of GPU Specif-ic OpenCLProgram on CPUs. In: Proceedings of 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 356–360 (2012)

    Google Scholar 

  10. Shen, J., Fang, J., Sips, H., Varbanescu, A.L.: An Application-centric Evaluation of OpenCL on Multi-core CPUs. Parallel Computing 39(12), 834–850 (2013)

    Article  Google Scholar 

  11. Shi, X., Lu, W., Wang, Z.: Programmable DNA Tile Self-assembly Using a Hierarchical Subtile Strategy. Nanotechnology 25(7), 075602 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, K., Yang, S., li, L., Qiu, M. (2014). Parallel Genetic Algorithm with OpenCL for Traveling Salesman Problem. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics