Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3D Fluid Scene Synthesizing Based on Video

  • Conference paper
AsiaSim 2014 (AsiaSim 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 474))

Included in the following conference series:

  • 1028 Accesses

Abstract

We present an approach for synthesizing larger 3D fluid scene with frame example of video. Both rich realistic texture and height field of fluid particles are employed to study. Realistic textures can enhance the synthesized fluid appearance, whereas the height field enable the generation of complex geometry and stochastic movement on the surface. Our method achieves a good trade off between the visual quality and the production cost. It includes four steps of height field calculating, belt areas clustering according to main components of height field histogram, 3D fluid scene constituting, and transition smoothing both in geometry and appearance. To generate temporally coherent 3D fluid scene over a fluid sequence, we transport fluid video information of colors, height values and particle texture coordinates over fluid sequence. We demonstrate our synthesis results for different scales of larger fluid scenes in several challenging scenarios and provide qualitative evaluation to our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jaranowski, P., Krolak, A., Schutz, B.: Data analysis of gravitational-wave signals from spinning neutron stars. The Signal and Its Detection 57(6), 63001–63015 (1998)

    Google Scholar 

  2. Michael, B., Andreas, S., Robert, B.: Synthesizing waves from animated height fields. ACM Transaction on Graph. 32(1) (2013)

    Google Scholar 

  3. Ardhuin, F., Rogers, E., Babanin, A.: Semiempirical dissipation source functions for ocean waves. Journal of Physical Oceanography 40(9), 1917–1941 (2010)

    Article  Google Scholar 

  4. Liao, J., Yu, J., Patterson, J.: Modeling ocean waves and interaction between objects and ocean water for cartoon animation. Computer Animation and Virtual Worlds 22(2), 81–89 (2011)

    Article  Google Scholar 

  5. Zowalik, Z., Murty, T.: Numerical modeling of ocean dynamics. World Scientific Pub. Co. Inc. (1993)

    Google Scholar 

  6. Frankot, R., Chellapp, R.: A method for enforcing integrability. Shape from Shading Algorithms 10(4), 439–451 (1988)

    MATH  Google Scholar 

  7. Nagai, T., Naruse, T., Ikehara, M.: HMM-based surface reconstruction from single images. In: IEEE International Conference of Image Processing, vol. 2, pp. 561–564 (2002)

    Google Scholar 

  8. Heas, P., Memin, E.: Three-dimensional motion estimation of atmospheric layers from image sequences. IEEE Transactions on Geoscience and Remote Sensing 46(8), 2385–2396 (2008)

    Article  Google Scholar 

  9. Pickup, D., Li, C., Cosker, D., Hall, P., Willis, P.: Reconstructing mass-conserved water surfaces using shape from shading and optical flow. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 189–201. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Paris, S., Chang, W., Kozhushnyan, O., Jarosz, W., Matusik, W.: Hair photo-booth:geometric and photometric acquisition of real hairstyles. ACM SIGGRAPH 27(3), 1–9 (2008)

    Article  Google Scholar 

  11. Tan, P., Fang, T., Xiao, J.X., Zhao, P., Quan, L.: Single image tree modeling. ACM SIGGRAPH Asia 27(5) (2008)

    Google Scholar 

  12. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Chen, H.T., Tien, M.C., Chen, Y.W., Tsai, W.J., Lee, S.Y.: Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video. Journal of Visual Communication and Image Representation 20(3), 204–216 (2009)

    Article  Google Scholar 

  14. Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K.: Using vanishing points for camera calibration and coarse 3D reconstruction from a single image. The Visual Computer 16(7), 396–410 (2000)

    Article  MATH  Google Scholar 

  15. Wang,H., Liao, M.,Zhang, Q.,Yang,Y.G., Turk, G.:Physically guided liquid sur-face modeling from videos. ACM SIGGRAPH USA 28, 90, 1–11 (2009)

    Google Scholar 

  16. Li, C., Shaw, M., Pickup, D., Cosker, D., Willis, P., Hall, P.: Real-time video based water surface approximation. In: Proceedings of the 2011 Conference for Visual Media Production, November 16-17, pp. 109–117 (2011)

    Google Scholar 

  17. Li, C., Pickup, D., Saunders, T., Cosker, D., Marshall, D., Hall, P., Willis, P.: Water surface modeling from a single viewpoint video. TVCG 19(7), 1242–1251 (2013)

    Google Scholar 

  18. Yu, M.Q., Quan, H.Y.: Fluid surface reconstruction based on specular reflection model. Journal of Visualization and Computer Animation 24(5), 497–510 (2013)

    Google Scholar 

  19. Yu, M.Q., Quan, H.Y., Xiao, S.: Realistic fluid real-time reconstruction. Aided Design and Computer Graphics 25(3) (2013)

    Google Scholar 

  20. Soler, C., Cani, M.P., Angelidis, A.: Hierarchical pattern mapping. ACM Transactions on Graphics 21(3), 673–680 (2002)

    Article  Google Scholar 

  21. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. ACM SIGGRAPH 24(3), 795–802 (2005)

    Article  Google Scholar 

  22. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N.: Texturing fluids. IEEE Transactions on Visualization and Computer Graphics 13(5), 939–952 (2007)

    Article  Google Scholar 

  23. Han, J., Zhou, K., Wei, L.Y., Gong, M., Bao, H., Zhang, X., Guo, B.: Fast example-based surface texture synthesis via discrete optimization. The Visual Computer 22(9), 918–925 (2006)

    Article  Google Scholar 

  24. Narain, R., Kwatra, V., Lee, H.P., Kim, T., Carlson, M., Lin, M.C.: Feature-guided dy-namic texture synthesis on continuous flows. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, pp. 361–370. Eurographics Association (2007)

    Google Scholar 

  25. Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splash-ing water. ACM SIGGRAPH, 335–344 (2006)

    Google Scholar 

  26. Zhou, K., Huang, X., Wang, X., Tong, Y.Y., Desbrun, M., Guo, B., Shum, H.Y.: Mesh quilting for geometric texture synthesis. ACM Transactions on Graphics 25(3), 690–697 (2006)

    Article  Google Scholar 

  27. Ying, L., Hertzmann, A., Biermann, H., Zorin, D.: Texture and shape synthesis on surfaces. In: Rendering Techniques 2001, pp. 301–312. Springer Vienna (2001)

    Google Scholar 

  28. Peteri, R., Fazekas, S., Huiskes, M.J.: Dyntex:a comprehensive database of dynamic textures. Pattern Recognition Letters 31(2), 1627–1632 (2010)

    Article  Google Scholar 

  29. Wei, L., Levoy, M.: Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics, Proceedings of ACM SIGGRAPH 22(3), 277–286 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quan, H., Xue, H., Song, X. (2014). 3D Fluid Scene Synthesizing Based on Video. In: Tanaka, S., Hasegawa, K., Xu, R., Sakamoto, N., Turner, S.J. (eds) AsiaSim 2014. AsiaSim 2014. Communications in Computer and Information Science, vol 474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45289-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45289-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45288-2

  • Online ISBN: 978-3-662-45289-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics