Abstract
We propose an efficient framework for hyperspectral image (HSI) classification based on superpixel and extreme learning machines (ELMs). One superpixel can be regarded as a small region consisting of a number of pixels with similar spectral characteristics. The novel framework utilizes superpixel to exploit spatial information which can improve classification accuracy. Specifically, we first adopt an efficient segmentation algorithm to divide the HSI into many superpixels. Then, spatial features of superpixels are extracted by computing the mean of the spectral pixels within each superpixel. The mean feature can combine the spatial and spectral information of each superpixel. Finally, ELMs is used for the classification of each mean feature to determine the class label of each superpixel. Experiments on two real HSIs demonstrate the outstanding performance of the proposed method in terms of classification accuracies and high computational efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113(suppl. 1), 110–122 (2009)
Ratle, F., Camps-Valls, G., Weston, J.: Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–2282 (2010)
Kawaguchi, S., Nishii, R.: Hyperspectral image classification by bootstrap AdaBoost with random decision stumps. IEEE Trans. Geosci. Remote Sens. 45(11), 3845–3851 (2007)
Li, J., Bioucas-Dias, J., Plaza, A.: Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)
Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)
Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)
Li, S., Yin, H., Fang, L.: Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. Remote Sens. 51(9), 4779–4789 (2013)
Fang, L., Li, S., Hu, J.: Multitemporal image change detection with compressed sparse representation. In: IEEE Conf. on Image Processing, pp. 2673–2676 (2011)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)
Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy Rate Superpixel Segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)
Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Machine Intell. 31(12), 2290–2297 (2009)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22(8), 888–905 (2000)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Machine Intell. 34(11), 2274–2281 (2012)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 265–294 (1978)
Camps-Valls, G., Gomez-Chova, L., Muñoz-MarÃ, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)
Heras, D.B., Argüello, F., Quesada-Barriuso, P.: Exploring ELM-based spatial-spectral classification of hyperspectral images. Int. J. Remote Sens. 35(2), 401–423 (2014)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Systems Technology 2(3), 27:1–27:27 (2011)
Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duan, W., Li, S., Fang, L. (2014). Spectral-Spatial Hyperspectral Image Classification Using Superpixel and Extreme Learning Machines. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-662-45646-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-45645-3
Online ISBN: 978-3-662-45646-0
eBook Packages: Computer ScienceComputer Science (R0)