Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spectral-Spatial Hyperspectral Image Classification Using Superpixel and Extreme Learning Machines

  • Conference paper
Pattern Recognition (CCPR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 483))

Included in the following conference series:

  • 5318 Accesses

Abstract

We propose an efficient framework for hyperspectral image (HSI) classification based on superpixel and extreme learning machines (ELMs). One superpixel can be regarded as a small region consisting of a number of pixels with similar spectral characteristics. The novel framework utilizes superpixel to exploit spatial information which can improve classification accuracy. Specifically, we first adopt an efficient segmentation algorithm to divide the HSI into many superpixels. Then, spatial features of superpixels are extracted by computing the mean of the spectral pixels within each superpixel. The mean feature can combine the spatial and spectral information of each superpixel. Finally, ELMs is used for the classification of each mean feature to determine the class label of each superpixel. Experiments on two real HSIs demonstrate the outstanding performance of the proposed method in terms of classification accuracies and high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113(suppl. 1), 110–122 (2009)

    Article  Google Scholar 

  2. Ratle, F., Camps-Valls, G., Weston, J.: Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–2282 (2010)

    Article  Google Scholar 

  3. Kawaguchi, S., Nishii, R.: Hyperspectral image classification by bootstrap AdaBoost with random decision stumps. IEEE Trans. Geosci. Remote Sens. 45(11), 3845–3851 (2007)

    Article  Google Scholar 

  4. Li, J., Bioucas-Dias, J., Plaza, A.: Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  5. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  6. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  7. Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–3960 (2011)

    Article  Google Scholar 

  8. Li, S., Yin, H., Fang, L.: Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. Remote Sens. 51(9), 4779–4789 (2013)

    Article  Google Scholar 

  9. Fang, L., Li, S., Hu, J.: Multitemporal image change detection with compressed sparse representation. In: IEEE Conf. on Image Processing, pp. 2673–2676 (2011)

    Google Scholar 

  10. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  12. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy Rate Superpixel Segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)

    Google Scholar 

  13. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Machine Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  15. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Machine Intell. 34(11), 2274–2281 (2012)

    Article  Google Scholar 

  16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 265–294 (1978)

    Google Scholar 

  17. Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)

    Article  Google Scholar 

  18. Heras, D.B., Argüello, F., Quesada-Barriuso, P.: Exploring ELM-based spatial-spectral classification of hyperspectral images. Int. J. Remote Sens. 35(2), 401–423 (2014)

    Article  Google Scholar 

  19. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Systems Technology 2(3), 27:1–27:27 (2011)

    Google Scholar 

  20. Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, W., Li, S., Fang, L. (2014). Spectral-Spatial Hyperspectral Image Classification Using Superpixel and Extreme Learning Machines. In: Li, S., Liu, C., Wang, Y. (eds) Pattern Recognition. CCPR 2014. Communications in Computer and Information Science, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45646-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45646-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45645-3

  • Online ISBN: 978-3-662-45646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics