Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Wavelet Lifting over Information-Based EEG Graphs for Motor Imagery Data Classification

  • Conference paper
  • First Online:
Physiological Computing Systems (PhyCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8908))

Included in the following conference series:

  • 607 Accesses

Abstract

The imagination of limb movements offers an intuitive paradigm for the control of electronic devices via brain computer interfacing (BCI). The analysis of electroencephalographic (EEG) data related to motor imagery potentials has proved to be a difficult task. EEG readings are noisy, and the elicited patterns occur in different parts of the scalp, at different instants and at different frequencies. Wavelet transform has been widely used in the BCI field as it offers temporal and spectral capabilities, although it lacks spatial information. In this study we propose a tailored second generation wavelet to extract features from these three domains. This transform is applied over a graph representation of motor imaginary trials, which encodes temporal and spatial information. This graph is enhanced using per-subject knowledge in order to optimise the spatial relationships among the electrodes, and to improve the filter design. This method improves the performance of classifying different imaginary limb movements maintaining the low computational resources required by the lifting transform over graphs. By using an online dataset we were able to positively assess the feasibility of using the novel method in an online BCI context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asensio-Cubero, J., Gan, J.Q., Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)

    Article  Google Scholar 

  2. Blankertz, B., Muller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, G., Millan, J.R., Schroder, M., Birbaumer, N.: The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

    Article  Google Scholar 

  3. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008)

    Article  Google Scholar 

  4. Bostanov, V.: BCI competition 2003-data sets ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51(6), 1057–1061 (2004)

    Article  Google Scholar 

  5. Brunner, C., Leeb, R., Muller-Putz, G.R., Schlogl, A., Pfurtscheller, G.: BCI competition 2008 - Graz data set A (2008). http://www.bbci.de/competition/iv/desc_2a.pdf

  6. Carrera-Leon, O., Ramirez, J.M., Alarcon-Aquino, V., Baker, M., D’Croz-Baron, D., Gomez-Gil, P.: A motor imagery BCI experiment using wavelet analysis and spatial patterns feature extraction. In: 2012 Workshop on Engineering Applications (WEA), pp. 1–6 (2012)

    Google Scholar 

  7. Claypoole Jr., R.L., Baraniuk, R.G., Nowak, R.D.: Adaptive wavelet transforms via lifting. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 1513–1516 (1998)

    Google Scholar 

  8. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Article  Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    Google Scholar 

  10. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (2006)

    Google Scholar 

  11. Dornhege, G.: Toward Brain-Computer Interfacing. The MIT Press, Cambridge (2007)

    Google Scholar 

  12. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  13. Martinez-Enriquez, E., Ortega, A.: Lifting transforms on graphs for video coding. In: Data Compression Conference, pp. 73–82. IEEE (2011)

    Google Scholar 

  14. Narang, S.K., Ortega, A.: Lifting based wavelet transforms on graphs. In: Conference of Asia-Pacific Signal and Information Processing Association, pp. 441–444 (2009)

    Google Scholar 

  15. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  16. Perseh, B., Sharafat, A.R.: An efficient P300-based bci using wavelet features and IBPSO-based channel selection. J. Med. Signals Sens. 2(3), 128 (2012)

    Google Scholar 

  17. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  18. Qin, L., He, B.: A wavelet-based timefrequency analysis approach for classification of motor imagery for braincomputer interface applications. J. Neural Eng. 2, 65 (2005)

    Article  Google Scholar 

  19. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  20. Schrder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 161–172. ACM (1995)

    Google Scholar 

  21. Shen, G., Ortega, A.: Comopact image representation using wavelet lifting along arbitrary trees. In: 15th IEEE International Conference on Image Processing, ICIP 2008, pp. 2808–2811. IEEE (2008)

    Google Scholar 

  22. Sweldens, W.: Wavelets and the lifting scheme: a 5 minute tour. Zeitschrift fur Angewandte Mathematik und Mechanik 76(2), 41–44 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sweldens, W., Schrder, P.: Building your own wavelets at home. In: Klees, R., Haagmans, R. (eds.) Wavelets in the Geosciences, pp. 72–107. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Wu, Z., Yao, D.: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. J. Neural Eng. 5(1), 36 (2008)

    Article  Google Scholar 

  26. Yong, Y.P.A., Hurley, N.J., Silvestre, G.C.M.: Single-trial EEG classification for brain-computer interface using wavelet decomposition. In: European Signal Processing Conference (EUSIPCO) (2005)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the EPSRC for funding his Ph.D. study via an EPSRC DTA award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Asensio-Cubero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asensio-Cubero, J., Gan, J.Q., Palaniappan, R. (2014). Wavelet Lifting over Information-Based EEG Graphs for Motor Imagery Data Classification. In: da Silva, H., Holzinger, A., Fairclough, S., Majoe, D. (eds) Physiological Computing Systems. PhyCS 2014. Lecture Notes in Computer Science(), vol 8908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45686-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45686-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45685-9

  • Online ISBN: 978-3-662-45686-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics