Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classes of Languages Generated by the Kleene Star of a Word

  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 2015 (MFCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9234))

Abstract

In this paper, we study the lattice and the Boolean algebra, possibly closed under quotient, generated by the languages of the form \(u^*\), where u is a word. We provide effective equational characterisations of these classes, i.e. one can decide using our descriptions whether a given regular language belongs or not to each of them.

The second author is supported by WCMCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and examples. In: Semigroups, Formal Languages and Groups (York, 1993), of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 466, pp. 73–117. Kluwer Acad. Publ., Dordrecht (1995)

    Google Scholar 

  3. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Honkala, J.: On slender languages. In: Paun, B., Rozenberg, G., Salomaa, A. (eds.)Current Trends in Theoretical Computer Science, pp. 708–716. World Scientific Publishing, River Edge (2001)

    Google Scholar 

  5. Pin, J.É.: Mathematical foundations of automata theory. http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

  6. Pin, J.É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 31–50. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2009)

    Google Scholar 

  7. Pin, J.É., Straubing, H., Thérien, D.: Some results on the generalized star-height problem. Inf. Comput. 101, 219–250 (1992)

    Article  MATH  Google Scholar 

  8. Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite semigroups induced by bands. Algebra Univers. 44(3–4), 217–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1), 1–10 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MATH  Google Scholar 

  11. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Language Theory, vol. 1, chap. 2, pp. 679–746. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Paperman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daviaud, L., Paperman, C. (2015). Classes of Languages Generated by the Kleene Star of a Word. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48057-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48056-4

  • Online ISBN: 978-3-662-48057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics