Abstract
In this paper, we study the lattice and the Boolean algebra, possibly closed under quotient, generated by the languages of the form \(u^*\), where u is a word. We provide effective equational characterisations of these classes, i.e. one can decide using our descriptions whether a given regular language belongs or not to each of them.
The second author is supported by WCMCS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose subgroups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)
Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and examples. In: Semigroups, Formal Languages and Groups (York, 1993), of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 466, pp. 73–117. Kluwer Acad. Publ., Dordrecht (1995)
Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008)
Honkala, J.: On slender languages. In: Paun, B., Rozenberg, G., Salomaa, A. (eds.)Current Trends in Theoretical Computer Science, pp. 708–716. World Scientific Publishing, River Edge (2001)
Pin, J.É.: Mathematical foundations of automata theory. http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
Pin, J.É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 31–50. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2009)
Pin, J.É., Straubing, H., Thérien, D.: Some results on the generalized star-height problem. Inf. Comput. 101, 219–250 (1992)
Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite semigroups induced by bands. Algebra Univers. 44(3–4), 217–239 (2000)
Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1), 1–10 (1982)
Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)
Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Language Theory, vol. 1, chap. 2, pp. 679–746. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Daviaud, L., Paperman, C. (2015). Classes of Languages Generated by the Kleene Star of a Word. In: Italiano, G., Pighizzini, G., Sannella, D. (eds) Mathematical Foundations of Computer Science 2015. MFCS 2015. Lecture Notes in Computer Science(), vol 9234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48057-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-662-48057-1_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48056-4
Online ISBN: 978-3-662-48057-1
eBook Packages: Computer ScienceComputer Science (R0)