Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enumeration of 2-Level Polytopes

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Abstract

We propose the first algorithm for enumerating all combinatorial types of 2-level polytopes of a given dimension d, and provide complete experimental results for \(d \leqslant 6\). Our approach is based on the notion of a simplicial core, that allows us to reduce the problem to the enumeration of the closed sets of a discrete closure operator, along with some convex hull computations and isomorphism tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O.: Extremal properties of 0/1-polytopes of dimension 5. In: Ziegler, G., Kalai, G. (eds.) Polytopes - Combinatorics and Computation, pp. 111–130. Birkhäuser (2000)

    Google Scholar 

  2. Akutsu, T.: On determining the congruence of point sets in d dimensions. Computational Geometry 9(4), 247–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyer, S.: Comprehensive perl archive network: Bit-vector-7.4 (2014). http://search.cpan.org/~stbey/Bit-Vector-7.4

  4. Chvátal, V.: On certain polytopes associated with graphs. J. Combinatorial Theory Ser. B 18, 138–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Loera, J., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics, vol. 25 (2010)

    Google Scholar 

  6. Ganter, B., Reuter, K.: Finding all closed sets: A general approach. Order 8(3), 283–290 (1991) (English)

    Google Scholar 

  7. Gawrilow, E., Joswig, M.: Polymake: an approach to modular software design in computational geometry. In: International Symposium on Computational Geometry (SOCG), pp. 222–231. ACM Press (2001)

    Google Scholar 

  8. Gouveia, J., Parrilo, P., Thomas, R.: Theta bodies for polynomial ideals. SIAM Journal on Optimization 20(4), 2097–2118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gouveia, J., Robinson, R., Thomas, R.: Polytopes of minimum positive semidefinite rank. Discrete & Computational Geometry 50(3), 679–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grande, F., Sanyal, R.: Theta rank, levelness, and matroid minors, arXiv preprint, arXiv:1408.1262 (2014)

    Google Scholar 

  11. Haase, C.: Lattice polytopes and unimodular triangulations, Ph.D. thesis, Technical University of Berlin (2000)

    Google Scholar 

  12. Hanner, O.: Intersections of translates of convex bodies. Mathematica Scandinavica 4, 65–87 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, A.: On a certain class of polytopes associated with independence systems. Mathematica Scandinavica 41, 225–241 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalai, G.: The number of faces of centrally-symmetric polytopes. Graphs and Combinatorics 5(1), 389–391 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  16. Paffenholz, A.: Faces of Birkhoff polytopes. Electronic Journal of Combinatorics 22 (2015)

    Google Scholar 

  17. Sanyal, R., Werner, A., Ziegler, G.: On Kalai’s conjectures concerning centrally symmetric polytopes. Discrete & Computational Geometry 41(2), 183–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stanley, R.: Decompositions of rational convex polytopes. Annals of Discrete Mathematics, 333–342 (1980)

    Google Scholar 

  19. Stanley, R.: Two poset polytopes. Discrete & Computational Geometry 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Mathematical Journal, Second Series 58(3), 433–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ziegler, G.: Lectures on polytopes, vol. 152, Springer Science & Business Media (1995)

    Google Scholar 

  22. Ziegler, G.: Lectures on 0/1-polytopes. In: Kalai, G., Ziegler, G. (eds.) Polytopes - Combinatorics and Computation. DMV Seminar, vol. 29, pp. 1–41. Springer, Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Bohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohn, A., Faenza, Y., Fiorini, S., Fisikopoulos, V., Macchia, M., Pashkovich, K. (2015). Enumeration of 2-Level Polytopes. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics