Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trading off Worst and Expected Cost in Decision Tree Problems

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

We characterize the best possible trade-off achievable when optimizing the construction of a decision tree with respect to both the worst and the expected cost. It is known that a decision tree achieving the minimum possible worst case cost can behave very poorly in expectation (even exponentially worse than the optimal), and the vice versa is also true. Led by applications where deciding for the right optimization criterion might not be easy, recently, several authors have focussed on the bicriteria optimization of decision trees.

An unanswered fundamental question is about the best possible trade-off achievable. Here we are able to sharply define the limits for such a task. More precisely, we show that for every \(\rho >0\) there is a decision tree D with worst testing cost at most \((1 + \rho )OPT_W+1\) and expected testing cost at most \(\frac{1}{1 - e^{-\rho }} OPT_E,\) where \(OPT_W\) and \(OPT_E\) denote the minimum worst testing cost and the minimum expected testing cost of a decision tree for the given instance. We also show that this is the best possible trade-off in the sense that there are infinitely many instances for which we cannot obtain a decision tree with both worst testing cost smaller than \((1 + \rho )OPT_W\) and expected testing cost smaller than \(\frac{1}{1 - e^{-\rho }} OPT_E.\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The probability of all the other objects should be multiplied by \(1-\epsilon \). For simplifying the notation we shall simply assume that the light objects have zero probability.

References

  1. Adler, M., Heeringa, B.: Approximating optimal binary decision trees. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)

    Google Scholar 

  2. Aslam, J.A., Rasala, A., Stein, C., Young, N.E.: Improved bicriteria existence theorems for scheduling. In: SODA, pp. 846–847 (1999)

    Google Scholar 

  3. Alkhalid, A., Chikalov, I., Moshkov, M.: A tool for study of optimal decision trees. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 353–360. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley, New York (1993)

    MATH  Google Scholar 

  5. Bellala, G., Bhavnani, S.K., Scott, C.: Group-based active query selection for rapid diagnosis in time-critical situations. IEEE-IT 58(1), 459–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buro, M.: On the maximum length of huffman codes. IPL 45, 219–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees for entity identification: approximation algorithms and hardness results. In: Proceedings of PODS 2007, pp. 53–62 (2007)

    Google Scholar 

  8. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On greedy algorithms for decision trees. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 206–217. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Cicalese, F., Laber, E., Saettler, A.: Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost. In: ICML 2014, pp. 414–422 (2014)

    Google Scholar 

  10. Garey, M.R.: Optimal binary identification procedures. SIAM J. Appl. Math. 23(2), 173–186 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garey, M.R.: Optimal binary search trees with restricted maximal depth. SIAM J. Comput. 3(2), 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golovin, D., Krause, A., Ray, D.: Near-optimal bayesian active learning with noisy observations. In: Advances in Neural Information Processing Systems, vol. 23, pp. 766–774 (2010)

    Google Scholar 

  13. Guillory, A., Bilmes, J.: Average-case active learning with costs. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Guillory, A., Bilmes, J.: Interactive submodular set cover. In: Proceedings of ICML 2010, pp. 415–422 (2010)

    Google Scholar 

  15. Gupta, A., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and adaptive TSP problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Hussain, S.: Relationships among various parameters for decision tree optimization. In: Faucher, C., Jain, L.C. (eds.) Innovations in Intelligent Machines-4. SCI, vol. 514, pp. 393–410. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Kelle, P., Schneider, H., Yi, H.: Decision alternatives between expected cost minimization and worst case scenario in emergency supply second revision. Int. J. Prod. Econ. 157, 250–260 (2014)

    Article  Google Scholar 

  18. Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.: On an optimal split tree problem. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Krause, A.: Optimizing Sensing: Theory and Applications. Ph.D. thesis, Carnegie Mellon University, December 2008

    Google Scholar 

  20. Larmore, L.L.: Height restricted optimal binary trees. SICOMP 16(6), 1115–1123 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited huffman codes. J. ACM 37(3), 464–473 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Milidi, R.L., Laber, E.S.: Bounding the inefficiency of length-restricted prefix codes. Algorithmica 31(4), 513–529 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moshkov, M.J.: Greedy algorithm with weights for decision tree construction. Fundam. Inform. 104(3), 285–292 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS 2000, pp. 86–92 (2000)

    Google Scholar 

  25. Rasala, A., Stein, C., Torng, E., Uthaisombut, P.: Existence theorems, lower bounds and algorithms for scheduling to meet two objectives. In: SODA 2002, pp. 723–731 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Cicalese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saettler, A., Laber, E., Cicalese, F. (2015). Trading off Worst and Expected Cost in Decision Tree Problems. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics