Abstract
We characterize the best possible trade-off achievable when optimizing the construction of a decision tree with respect to both the worst and the expected cost. It is known that a decision tree achieving the minimum possible worst case cost can behave very poorly in expectation (even exponentially worse than the optimal), and the vice versa is also true. Led by applications where deciding for the right optimization criterion might not be easy, recently, several authors have focussed on the bicriteria optimization of decision trees.
An unanswered fundamental question is about the best possible trade-off achievable. Here we are able to sharply define the limits for such a task. More precisely, we show that for every \(\rho >0\) there is a decision tree D with worst testing cost at most \((1 + \rho )OPT_W+1\) and expected testing cost at most \(\frac{1}{1 - e^{-\rho }} OPT_E,\) where \(OPT_W\) and \(OPT_E\) denote the minimum worst testing cost and the minimum expected testing cost of a decision tree for the given instance. We also show that this is the best possible trade-off in the sense that there are infinitely many instances for which we cannot obtain a decision tree with both worst testing cost smaller than \((1 + \rho )OPT_W\) and expected testing cost smaller than \(\frac{1}{1 - e^{-\rho }} OPT_E.\)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The probability of all the other objects should be multiplied by \(1-\epsilon \). For simplifying the notation we shall simply assume that the light objects have zero probability.
References
Adler, M., Heeringa, B.: Approximating optimal binary decision trees. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)
Aslam, J.A., Rasala, A., Stein, C., Young, N.E.: Improved bicriteria existence theorems for scheduling. In: SODA, pp. 846–847 (1999)
Alkhalid, A., Chikalov, I., Moshkov, M.: A tool for study of optimal decision trees. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 353–360. Springer, Heidelberg (2010)
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley, New York (1993)
Bellala, G., Bhavnani, S.K., Scott, C.: Group-based active query selection for rapid diagnosis in time-critical situations. IEEE-IT 58(1), 459–478 (2012)
Buro, M.: On the maximum length of huffman codes. IPL 45, 219–223 (1993)
Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees for entity identification: approximation algorithms and hardness results. In: Proceedings of PODS 2007, pp. 53–62 (2007)
Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On greedy algorithms for decision trees. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 206–217. Springer, Heidelberg (2010)
Cicalese, F., Laber, E., Saettler, A.: Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost. In: ICML 2014, pp. 414–422 (2014)
Garey, M.R.: Optimal binary identification procedures. SIAM J. Appl. Math. 23(2), 173–186 (1972)
Garey, M.R.: Optimal binary search trees with restricted maximal depth. SIAM J. Comput. 3(2), 101–110 (1974)
Golovin, D., Krause, A., Ray, D.: Near-optimal bayesian active learning with noisy observations. In: Advances in Neural Information Processing Systems, vol. 23, pp. 766–774 (2010)
Guillory, A., Bilmes, J.: Average-case active learning with costs. In: Gavaldà , R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009)
Guillory, A., Bilmes, J.: Interactive submodular set cover. In: Proceedings of ICML 2010, pp. 415–422 (2010)
Gupta, A., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and adaptive TSP problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010)
Hussain, S.: Relationships among various parameters for decision tree optimization. In: Faucher, C., Jain, L.C. (eds.) Innovations in Intelligent Machines-4. SCI, vol. 514, pp. 393–410. Springer, Heidelberg (2014)
Kelle, P., Schneider, H., Yi, H.: Decision alternatives between expected cost minimization and worst case scenario in emergency supply second revision. Int. J. Prod. Econ. 157, 250–260 (2014)
Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.: On an optimal split tree problem. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999)
Krause, A.: Optimizing Sensing: Theory and Applications. Ph.D. thesis, Carnegie Mellon University, December 2008
Larmore, L.L.: Height restricted optimal binary trees. SICOMP 16(6), 1115–1123 (1987)
Larmore, L.L., Hirschberg, D.S.: A fast algorithm for optimal length-limited huffman codes. J. ACM 37(3), 464–473 (1990)
Milidi, R.L., Laber, E.S.: Bounding the inefficiency of length-restricted prefix codes. Algorithmica 31(4), 513–529 (2001)
Moshkov, M.J.: Greedy algorithm with weights for decision tree construction. Fundam. Inform. 104(3), 285–292 (2010)
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS 2000, pp. 86–92 (2000)
Rasala, A., Stein, C., Torng, E., Uthaisombut, P.: Existence theorems, lower bounds and algorithms for scheduling to meet two objectives. In: SODA 2002, pp. 723–731 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saettler, A., Laber, E., Cicalese, F. (2015). Trading off Worst and Expected Cost in Decision Tree Problems. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-662-48971-0_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48970-3
Online ISBN: 978-3-662-48971-0
eBook Packages: Computer ScienceComputer Science (R0)