Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scale-Invariant Heat Kernel Mapping for Shape Analysis

  • Chapter
  • First Online:
Transactions on Computational Science XXVI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 9550))

  • 900 Accesses

Abstract

In shape analysis, scaling factors have a great influence on the results of non-rigid shape retrieval and correspondence. In order to eliminate the effects of scale ambiguity, a method with scale-invariant property is required for shape analysis. Previous mapping method only focus on the isometric conditions. In this paper, a Scale-invariant Heat Kernel Mapping (SIHKM) method is introduced, which bases on the heat diffusion process on shapes. It is capable of handling various types of 3D shapes with different kinds of scaling transformations. SIHKM is the extension of the Heat Kernel and related to the heat diffusion behavior on shapes. With SIHKM, we will obtain the intrinsic information from the scaled shapes while without regard to the impact of their scaling. SIHKM method maintains the heat kernel between two corresponding points on the shape with scaling deformations. These deformations include scaling transformation only, isometric deformation and scaling, and local scaling on shapes. The proof of the theory and experiments are given in this work. All experiments are performed on the TOSCA dataset and the results show that our proposed method achieves good robustness and effectiveness for scaled shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lafon, S.S.: Diffusion maps and geometric harmonics (2004)

    Google Scholar 

  3. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383 (2009)

    Article  Google Scholar 

  4. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, vol. 1704 (2010)

    Google Scholar 

  5. Sahillioglu, Y., Yemez, Y.: 3D Shape correspondence by isometry-driven greedy optimization, p. 453. IEEE (2010)

    Google Scholar 

  6. Kin-Chung, A.O., Tai, C.L., Cohen-Or, D., Zheng, Y., Fu, H.: Electors voting for fast automatic shape correspondence, p. 645

    Google Scholar 

  7. Lipman, Y., Funkhouser, T.: MöBius voting for surface correspondence. ACM Trans. Graph. 28, 71 (2009)

    Article  Google Scholar 

  8. Sahillioglu, Y., Yemez, Y.: Scale normalization for isometric shape matching, p. 2233

    Google Scholar 

  9. Aflalo, Y., Kimmel, R., Raviv, D.: Scale Invariant Geometry for Nonrigid Shapes. SIAM J. Imaging Sci. 6, 1579 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Springer, Heidelberg (2010)

    Google Scholar 

  11. Ruggeri, M.R., Patané, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89, 248 (2010)

    Article  Google Scholar 

  12. Wetzler, A., Aflalo, Y., Dubrovina, A., Kimmel, R.: The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 302–316. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation, p. 225 (2007)

    Google Scholar 

  14. Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput.-Aided Des. 39, 398 (2007)

    Article  Google Scholar 

  15. Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum 29, 1865 (2010)

    Article  Google Scholar 

  16. Zhang, H., van Kaick, O., Dyer R.: Spectral methods for mesh processing and analysis, pp. 1–22

    Google Scholar 

  17. Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Comput.-Aided Des. 38, 342 (2006)

    Article  Google Scholar 

  18. Hu, J., Hua, J.: Pose analysis using spectral geometry. Visual Comput. 29, 949 (2013)

    Article  Google Scholar 

  19. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in Rd, p. 1031. Society for Industrial and Applied Mathematics (2009)

    Google Scholar 

  21. Sharma, A., Horaud, R., Cech, J., Boyer, E.: Topologically-robust 3D shape matching based on diffusion geometry and seed growing. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2481. IEEE, Providence (2011)

    Google Scholar 

  22. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555 (2010)

    Article  Google Scholar 

  23. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984)

    MATH  Google Scholar 

  24. Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  25. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2009)

    Book  Google Scholar 

  26. Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. (TOG) 29, 121 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The research is partially supported by National Natural Science Foundation of China (No. 61170170 and 61170203) and the National Key Technology Research and Development Program of China (2012BAH33F04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongke Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, K. et al. (2016). Scale-Invariant Heat Kernel Mapping for Shape Analysis. In: Gavrilova, M., Tan, C., Iglesias, A., Shinya, M., Galvez, A., Sourin, A. (eds) Transactions on Computational Science XXVI. Lecture Notes in Computer Science(), vol 9550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49247-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49247-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49246-8

  • Online ISBN: 978-3-662-49247-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics