Abstract
In shape analysis, scaling factors have a great influence on the results of non-rigid shape retrieval and correspondence. In order to eliminate the effects of scale ambiguity, a method with scale-invariant property is required for shape analysis. Previous mapping method only focus on the isometric conditions. In this paper, a Scale-invariant Heat Kernel Mapping (SIHKM) method is introduced, which bases on the heat diffusion process on shapes. It is capable of handling various types of 3D shapes with different kinds of scaling transformations. SIHKM is the extension of the Heat Kernel and related to the heat diffusion behavior on shapes. With SIHKM, we will obtain the intrinsic information from the scaled shapes while without regard to the impact of their scaling. SIHKM method maintains the heat kernel between two corresponding points on the shape with scaling deformations. These deformations include scaling transformation only, isometric deformation and scaling, and local scaling on shapes. The proof of the theory and experiments are given in this work. All experiments are performed on the TOSCA dataset and the results show that our proposed method achieves good robustness and effectiveness for scaled shape analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21, 5 (2006)
Lafon, S.S.: Diffusion maps and geometric harmonics (2004)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383 (2009)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, vol. 1704 (2010)
Sahillioglu, Y., Yemez, Y.: 3D Shape correspondence by isometry-driven greedy optimization, p. 453. IEEE (2010)
Kin-Chung, A.O., Tai, C.L., Cohen-Or, D., Zheng, Y., Fu, H.: Electors voting for fast automatic shape correspondence, p. 645
Lipman, Y., Funkhouser, T.: MöBius voting for surface correspondence. ACM Trans. Graph. 28, 71 (2009)
Sahillioglu, Y., Yemez, Y.: Scale normalization for isometric shape matching, p. 2233
Aflalo, Y., Kimmel, R., Raviv, D.: Scale Invariant Geometry for Nonrigid Shapes. SIAM J. Imaging Sci. 6, 1579 (2013)
Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Springer, Heidelberg (2010)
Ruggeri, M.R., Patané, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89, 248 (2010)
Wetzler, A., Aflalo, Y., Dubrovina, A., Kimmel, R.: The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 302–316. Springer, Heidelberg (2013)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation, p. 225 (2007)
Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput.-Aided Des. 39, 398 (2007)
Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Comput. Graph. Forum 29, 1865 (2010)
Zhang, H., van Kaick, O., Dyer R.: Spectral methods for mesh processing and analysis, pp. 1–22
Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Comput.-Aided Des. 38, 342 (2006)
Hu, J., Hua, J.: Pose analysis using spectral geometry. Visual Comput. 29, 949 (2013)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)
Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in Rd, p. 1031. Society for Industrial and Applied Mathematics (2009)
Sharma, A., Horaud, R., Cech, J., Boyer, E.: Topologically-robust 3D shape matching based on diffusion geometry and seed growing. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2481. IEEE, Providence (2011)
Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555 (2010)
Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984)
Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Cambridge University Press, Cambridge (1997)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2009)
Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. (TOG) 29, 121 (2010)
Acknowledgement
The research is partially supported by National Natural Science Foundation of China (No. 61170170 and 61170203) and the National Key Technology Research and Development Program of China (2012BAH33F04).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wang, K. et al. (2016). Scale-Invariant Heat Kernel Mapping for Shape Analysis. In: Gavrilova, M., Tan, C., Iglesias, A., Shinya, M., Galvez, A., Sourin, A. (eds) Transactions on Computational Science XXVI. Lecture Notes in Computer Science(), vol 9550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49247-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-49247-5_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49246-8
Online ISBN: 978-3-662-49247-5
eBook Packages: Computer ScienceComputer Science (R0)