Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detection and Recognition of Speed Limit Sign from Video

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9621))

Included in the following conference series:

  • 2404 Accesses

Abstract

The proper identification of speed limit traffic sighs can alarm the drivers the highest speed allowed and can effictively reduce the number of traffic accidents. In this paper, we put forward an efficient detection method for speed limit traffic signs based on the fast radial symmetry transform with new Sobel operator. when we detected the speed limit traffic sign, we need to segment the digits. Digit segmentation is achieved by cropping the candidate traffic sign from the traffic scene, making use of Otsu thresholding algorithm to binary it, and normalizing it to a uniform size. Finally we recognize and classify the signs using DAG-SVMs classifier which is trained for this purpose. In cloudy weather conditions and dusk illumination condition, we tested 10 videos about 28 min. The recognition rate of frames which contain speed limit sign is 90.48 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meng-Yin, F., Huang, Y.-S.: A survey of traffic sign recognition. In: 2010 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 119–124. IEEE (2010)

    Google Scholar 

  2. De La Escalera, A., Moreno, L.E., Salichs, M.A., Armingol, J.M.: Road traffic sign detection and classification. IEEE Trans. Ind. Electron. 44(6), 848–859 (1997)

    Article  Google Scholar 

  3. Damavandi, B.Y., Mohammadi, K.: Speed limit traffic sign detection and recognition. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 2, pp. 797–802. IEEE (2004)

    Google Scholar 

  4. Escalera, S., Radeva, P., Pujol, O.: Traffic sign classification using error correcting techniques. In: VISAPP 2007, vol. 2, pp. 281–285 (2007)

    Google Scholar 

  5. Loy, G., Zelinsky, A.: A fast radial symmetry transform for detecting points of interest. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 358–368. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Barnes, N., Loy, G., Shaw, D.: The regular polygon detector. Pattern Recogn. 43(3), 592–602 (2010)

    Article  MATH  Google Scholar 

  7. Biswas, R., Fleyeh, H., Mostakim, M.: Detection and classification of speed limit traffic signs. In: 2014 World Congress on Computer Applications and Information Systems (WCCAIS), pp. 1–6. IEEE (2014)

    Google Scholar 

  8. Sekanina, L., Torresen, J.: Detection of norwegian speed limit signs. In: ESM, pp. 337–340 (2002)

    Google Scholar 

  9. Jianping, W., James, Y.: Tsai.: Real-time speed limit sign recognition based on locally adaptive thresholding and depth-first-search. Photogram. Eng. Remote Sens. 71(4), 405–414 (2005)

    Article  Google Scholar 

  10. Lorsakul, A., Suthakorn, J.: Traffic sign recognition for intelligent vehicle/driver assistance system using neural network on opencv. In: The 4th International Conference on Ubiquitous Robots and Ambient Intelligence (2007)

    Google Scholar 

  11. Höferlin, B., Zimmermann, K.: Towards reliable traffic sign recognition. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 324–329. IEEE (2009)

    Google Scholar 

  12. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  14. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  15. Liu, W., Liu, Y., Hongfei, Y., Yuan, H., Zhao, H.: Real-time speed limit sign detection and recognition from image sequences. In: 2010 International Conference on Artificial Intelligence and Computational Intelligence (AICI), vol. 1, pp. 262–267. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, L., Yang, CS., Pan, JS. (2016). Detection and Recognition of Speed Limit Sign from Video. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49381-6_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49381-6_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49380-9

  • Online ISBN: 978-3-662-49381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics