Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Manipulability of Voting Procedures: Strategic Voting and Strategic Nomination

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXIII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9760))

  • 466 Accesses

Abstract

In this paper the concepts of manipulation as strategic voting (misrepresentation of true preferences) and strategic nomination (by adding, or removing alternatives) are investigated. The connection between Arrow’s and Gibbard-Satterthwaite theorems is discussed from the viewpoint of dilemma between dictatorship and manipulability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arrow, K.J.: Social Choice and Individual Values, 1st, 2nd edn. Yale University Press, New Haven (1951/1963)

    Google Scholar 

  • Brams, J.: Mathematics and Democracy. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  • Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41, 587–601 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Gärdenfors, P.: On definitions of manipulation of social choice functions. In: Laffont, J.J. (ed.) Aggregation and Revelation of Preferences. North-Holland Publishing, Amsterdam (1979)

    Google Scholar 

  • Reny, P.: Arrow’s theorem and the Gibbard-Satterthwaite theorem: a unified approach. Econ. Lett. 70, 99–105 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Satterthwaite, M.A.: Strategy-proofness and arrow’s conditions: existence and correspondence for voting procedures and social welfare functions. J. Econ. Theory 10, 187–217 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  • Taylor A.D., Pacelli, A.M.: Mathematics and Politics, Strategy, Voting, Power and Proof, 2nd edn. Springer, Berlin, Heidelberg, New York (2008)

    Google Scholar 

  • Tideman, T.N.: Independence of clones as a criterion for voting rules. Soc. Choice Welf. 4, 185–206 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Turnovec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turnovec, F. (2016). Manipulability of Voting Procedures: Strategic Voting and Strategic Nomination. In: Nguyen, N., Kowalczyk, R., Mercik, J. (eds) Transactions on Computational Collective Intelligence XXIII. Lecture Notes in Computer Science(), vol 9760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52886-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52886-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52885-3

  • Online ISBN: 978-3-662-52886-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics