Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimum Eccentricity Shortest Paths in Some Structured Graph Classes

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Included in the following conference series:

Abstract

We investigate the Minimum Eccentricity Shortest Path problem in some structured graph classes. It asks for a given graph to find a shortest path with minimum eccentricity. Although it is NP-hard in general graphs, we demonstrate that a minimum eccentricity shortest path can be found in linear time for distance-hereditary graphs (generalizing the previous result for trees) and in \(\mathcal {O}(n^3m)\) time for chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theor. Ser. B 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Chang, G.J., Nemhauser, G.L.: The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Meth. 5, 332–345 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 292–302 (1997)

    MathSciNet  MATH  Google Scholar 

  5. D’Atri, A., Moscarini, M.: Distance-hereditaxy graphs, Steiner trees and connected domination. SIAM J. Comput. 17, 521–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 158–169. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Dragan, F.F., Nicolai, F.: LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem. Discrete Appl. Math. 98, 191–207 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7, 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford Ser. 2(28), 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Slater, P.J.: Locating central paths in a graph. Transp. Sci. 16, 1–18 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the NIH grant R01 GM103309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Leitert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Leitert, A. (2016). Minimum Eccentricity Shortest Paths in Some Structured Graph Classes. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics