Abstract
We investigate the Minimum Eccentricity Shortest Path problem in some structured graph classes. It asks for a given graph to find a shortest path with minimum eccentricity. Although it is NP-hard in general graphs, we demonstrate that a minimum eccentricity shortest path can be found in linear time for distance-hereditary graphs (generalizing the previous result for trees) and in \(\mathcal {O}(n^3m)\) time for chordal graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theor. Ser. B 41, 182–208 (1986)
Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)
Chang, G.J., Nemhauser, G.L.: The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Meth. 5, 332–345 (1984)
Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 292–302 (1997)
D’Atri, A., Moscarini, M.: Distance-hereditaxy graphs, Steiner trees and connected domination. SIAM J. Comput. 17, 521–538 (1988)
Dragan, F.F., Köhler, E., Leitert, A.: Line-distortion, bandwidth and path-length of a graph. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 158–169. Springer, Heidelberg (2014)
Dragan, F.F., Leitert, A.: On the minimum eccentricity shortest path problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 276–288. Springer, Heidelberg (2015)
Dragan, F.F., Nicolai, F.: LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem. Discrete Appl. Math. 98, 191–207 (2000)
Faber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7, 433–444 (1986)
Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford Ser. 2(28), 417–420 (1977)
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)
Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)
Slater, P.J.: Locating central paths in a graph. Transp. Sci. 16, 1–18 (1982)
Acknowledgement
This work was partially supported by the NIH grant R01 GM103309.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragan, F.F., Leitert, A. (2016). Minimum Eccentricity Shortest Paths in Some Structured Graph Classes. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-662-53174-7_14
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53173-0
Online ISBN: 978-3-662-53174-7
eBook Packages: Computer ScienceComputer Science (R0)