Abstract
Strong lexicalization is the process of turning a grammar generating trees into an equivalent one, in which all rules contain a terminal leaf. It is known that tree adjoining grammars cannot be strongly lexicalized, whereas the more powerful simple context-free tree grammars can. It is demonstrated that multiple simple context-free tree grammars are as expressive as multi-component tree adjoining grammars and that both allow strong lexicalization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Engelfriet, J., Maneth, S.: Tree languages generated by context-free graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 15–29. Springer, Heidelberg (2000). doi:10.1007/978-3-540-46464-8_2
Engelfriet, J., Schmidt, E.M.: IO and OI I. J. Comput. Syst. Sci. 15(3), 328–353 (1977)
Fujiyoshi, A.: Epsilon-free grammars and lexicalized grammars that generate the class of the mildly context-sensitive languages. In: Proceedings of the 7th International Workshop on Tree Adjoining Grammar and Related Formalisms, pp. 16–23 (2005)
Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, chap. 1, pp. 1–68. Springer, Heidelberg (1997). doi:10.1007/978-3-642-59126-6_1
Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10(1), 136–163 (1975)
Joshi, A.K., Schabes, Y.: Tree-adjoining grammars and lexicalized grammars. In: Nivat, M., Podelski, A. (eds) Tree Automata and Languages, pp. 409–431. North-Holland (1992)
Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14846-0
Kanazawa, M.: Second-order abstract categorial grammars as hyperedge replacement grammars. J. Log. Lang. Inf. 19(2), 137–161 (2010)
Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic linear context-free tree grammars. J. Log. Lang. Inf. 20(3), 361–384 (2011)
Kuhlmann, M.: Dependency Structures and Lexicalized Grammars: An Algebraic Approach. LNCS (LNAI), vol. 6270. Springer, Heidelberg (2010)
Kuhlmann, M., Satta, G.: Tree-adjoining grammars are not closed under strong lexicalization. Comput. Linguist. 38(3), 617–629 (2012)
Maletti, A., Engelfriet, J.: Strong lexicalization of tree adjoining grammars. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 506–515. ACL (2012)
Mönnich, U.: Adjunction as substitution: an algebraic formulation of regular, context-free and tree adjoining languages. In: Proceedings of the 3rd International Conference on Formal Grammar, pp. 169–178. Université de Provence, France (1997)
Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theor. Comput. Sci. 223(1–2), 87–120 (1999)
Rounds, W.C.: Context-free grammars on trees. In: Proceedings of the 1st ACM Symposium on Theory of Computation, pp. 143–148. ACM (1969)
Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput. Sci. 88(2), 191–229 (1991)
Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics, pp. 104–111. ACL (1987)
Weir, D.J.: Characterizing mildly context-sensitive grammar formalisms. Ph.D. thesis, University of Pennsylvania (1988)
Acknowledgment
We are grateful to the reviewers for their constructive comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Engelfriet, J., Maletti, A. (2017). Multiple Context-Free Tree Grammars and Multi-component Tree Adjoining Grammars. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-662-55751-8_18
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55750-1
Online ISBN: 978-3-662-55751-8
eBook Packages: Computer ScienceComputer Science (R0)