Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Patient Surface Model and Internal Anatomical Landmarks Embedding

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2018

Part of the book series: Informatik aktuell ((INFORMAT))

  • 3088 Accesses

Zusammenfassung

The patient surface model has shown to be a useful asset to improve existing diagnostic and interventional tasks in a clinical environment. For example, in combination with RGB-D cameras, a patient surface model can be used to automate and accelerate the diagnostic imaging workflow, manage patient dose, and provide navigation assistance. A shortcoming of today’s patient surface models, however, is that, internal anatomical landmarks are not present. In this paper, we introduce a method to estimate internal anatomical landmarks based on the surface model of a patient. Our method relies on two major steps. First, we fit a template surface model is to a segmented surface of a CT dataset with annotated internal landmarks using keypoint and feature descriptor based rigid alignment and atlas-based non-rigid registration. In a second step, we find for each internal landmark a neighborhood on the template surface and learn a generalized linear embedding between neighboring surface vertices in the template and the internal landmark. We trained and evaluated our method using cross-validation in 20 datasets over 50 internal landmarks. We compared the performance of four different generalized linear models. The best mean estimation error over all the landmarks was achieved using the lasso regression method with a mean error of 12.19 ± 6.98 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Singh V, Chang Y, Ma K, et al. Estimating a patient surface model for optimizing the medical scanning workflow. Proc MICCAI. 2014; p. 472–479.

    Google Scholar 

  2. Johnson PB, Borrego D, Balter S, et al. Skin dose mapping for fluoroscopically guided interventions. Med Phys. 2011;38(10):5490–5499.

    Google Scholar 

  3. Bauer S, Wasza J, Haase S, et al. Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s kinect sensor. Proc IEEE ICCV. 2011; p. 1175–1181.

    Google Scholar 

  4. Anguelov D, Koller D, Pang HC, et al. Recovering articulated object models from 3D range data. Uncertain Artif Intell. 2004; p. 18–26.

    Google Scholar 

  5. 5. Zhong X, Strobel N, Kowarschik M, et al. Comparison of default patient surface model estimation methods. Proc BVM. 2017; p. 281–286.

    Google Scholar 

  6. Darom T, Keller Y. Scale-invariant features for 3-D mesh models. IEEE Trans Image Process. 2012;21(5):2758–2769.

    Google Scholar 

  7. Sahillioğlu Y, Yemez Y. Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2203–2215.

    Google Scholar 

  8. Allen B, Curless B, Popović Z. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans Graph. 2003;22(3):587–594.

    Google Scholar 

  9. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–2326.

    Google Scholar 

  10. del Toro OAJ, Goksel O, Menze B, et al. VISCERAL: visual concept extraction challenge in radiology. Proc VISCERAL Challenge at ISBI. 2014; p. 6–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, X., Strobel, N., Birkhold, A., Kowarschik, M., Fahrig, R., Maier, A. (2018). Patient Surface Model and Internal Anatomical Landmarks Embedding. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56537-7_27

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56536-0

  • Online ISBN: 978-3-662-56537-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics