Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kaleidoscope: An Efficient Poker Protocol with Payment Distribution and Penalty Enforcement

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10957))

Included in the following conference series:

Abstract

The two main challenges in deploying real world secure poker protocols lie in enforcing the distribution of rewards and dealing with misbehaving/aborting parties. Using recent advances in cryptocurrencies and blockchain techniques, Kumaresan et al. (CCS 2015) and Bentov et al. (ASIACRYPT 2017) were able to solve those problems for the general case of secure multiparty computation. However, in the specific case of secure poker, they leave major open problems in terms of efficiency and security. This work tackles these problems by presenting the first full-fledged simulation-based security definition for secure poker and the first fully-simulatable secure poker protocol that provably realizes such a security definition. Our protocol provably enforces rewards distribution and penalties for misbehaving parties, while achieving efficiency comparable to previous tailor-made poker protocols, which do not have formal security proofs and rewards/penalties enforcement. Moreover, our protocol achieves reduced on-chain storage requirements for the penalties and rewards enforcement mechanism.

B. David and M. Larangeira—This work was supported by the Input Output Cryptocurrency Collaborative Research Chair, which has received funding from Input Output HK.

R. Dowsley—This project has received funding from the European research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme (grant agreement No. 669255).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This zero-knowledge proof of the knowledge of the exponent solves the issue in [3] that was pointed out in the introduction.

  2. 2.

    We remark that, in our scenario, broadcasts can achieved by having parties communicate directly with each other due to the low number of parties (typically \(n \le 10\)).

References

  1. Ahmed, M.: How UK beat the odds to win at online gambling (2017). https://www.ft.com/content/044a3d9e-7d1a-11e7-9108-edda0bcbc928. Accessed 29 Aug 2017

  2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 443–458. IEEE Computer Society Press, May 2014

    Google Scholar 

  3. Barnett, A., Smart, N.P.: Mental poker revisited. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 370–383. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_29

    Chapter  Google Scholar 

  4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

    Google Scholar 

  6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24

    Chapter  Google Scholar 

  7. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_15

    Chapter  Google Scholar 

  8. Buterin, V.: White paper (2013). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 5 Dec 2017

  9. Castellà-Roca, J., Sebé, F., Domingo-Ferrer, J.: Dropout-tolerant TTP-free mental poker. In: Katsikas, S., López, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp. 30–40. Springer, Heidelberg (2005). https://doi.org/10.1007/11537878_4

    Chapter  Google Scholar 

  10. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  11. Crépeau, C.: A zero-knowledge Poker protocol that achieves confidentiality of the players’ strategy or how to achieve an electronic Poker face. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 239–247. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_18

    Chapter  Google Scholar 

  12. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: an efficient poker protocol with payment distribution and penalty enforcement. Cryptology ePrint Archive, Report 2017/899 (2017). https://eprint.iacr.org/2017/899

  13. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_8

    Chapter  Google Scholar 

  14. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28

    Chapter  Google Scholar 

  15. The Economist: A Big Deal (2007). http://www.economist.com/node/10281315#print. Accessed 24 Aug 2017

  16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

    Chapter  Google Scholar 

  17. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  18. IMDb: Kaleidoscope (2017). http://www.imdb.com/title/tt0060581/. Accessed 12 Sept 2017

  19. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

    Article  Google Scholar 

  20. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized poker. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 195–206. ACM Press, October 2015

    Google Scholar 

  21. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

    Chapter  Google Scholar 

  23. Reitwiessner, C.: EIP 196 (2017). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md. Accessed 13 Dec 2017

  24. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  Google Scholar 

  25. Sebe, F., Domingo-Ferrer, J., Castella-Roca, J.: On the security of a repaired mental poker protocol. In: Third International Conference on Information Technology: New Generations, pp. 664–668 (2006)

    Google Scholar 

  26. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. In: Klarner, D.A. (ed.) The Mathematical Gardner, pp. 37–43. Springer, Heidelberg (1981). https://doi.org/10.1007/978-1-4684-6686-7_5

    Chapter  Google Scholar 

  27. Szabo, N.: Smart contracts: building blocks for digital markets (1996). http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html. Accessed 5 Dec 2017

  28. Wei, T.J.: Secure and practical constant round mental poker. Inf. Sci. 273, 352–386 (2014)

    Article  Google Scholar 

  29. Wei, T.J., Wang, L.C.: A fast mental poker protocol. J. Math. Cryptol. 6(1), 39–68 (2012)

    Google Scholar 

  30. Wikipedia: Online Poker (2017). https://en.wikipedia.org/wiki/Online_poker. Accessed 29 Aug 2017

  31. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://gavwood.com/paper.pdf. Accessed 5 Dec 2017

  32. Zhao, W., Varadharajan, V.: Efficient TTP-free mental poker protocols. In: ITCC 2005 - Volume II, vol. 1, pp. 745–750, April 2005

    Google Scholar 

  33. Zhao, W., Varadharajan, V., Mu, Y.: A secure mental poker protocol over the internet. In: ACSW Frontiers 2003, pp. 105–109. Australian Computer Society Inc., Darlinghurst (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

David, B., Dowsley, R., Larangeira, M. (2018). Kaleidoscope: An Efficient Poker Protocol with Payment Distribution and Penalty Enforcement. In: Meiklejohn, S., Sako, K. (eds) Financial Cryptography and Data Security. FC 2018. Lecture Notes in Computer Science(), vol 10957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58387-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58387-6_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58386-9

  • Online ISBN: 978-3-662-58387-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics