Abstract
The one-variable fragment of the first-order logic of linear intuitionistic Kripke models, referred to here as Corsi logic, is shown to have as its modal counterpart the many-valued modal logic \(\mathsf {S5(\mathbf {G})}\). It is also shown that \(\mathsf {S5(\mathbf {G})}\) can be interpreted in the crisp many-valued modal logic \(\mathsf {S5(\mathbf {G})^C}\), the modal counterpart of the one-variable fragment of first-order Gödel logic. Finally, an algebraic finite model property is proved for \(\mathsf {S5(\mathbf {G})^C}\) and used to establish co-NP-completeness for validity in the aforementioned modal logics and one-variable fragments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logics. J. Symb. Log. 72, 26–44 (2007)
Bezhanishvili, G.: Varieties of monadic Heyting algebras - part I. Studia Logica 61(3), 367–402 (1998)
Bou, F., Esteva, F., Godo, L., Rodriguez, R.O.: Possibilistic semantics for a modal KD45 extension of Gödel fuzzy logic. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 123–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0_11
Bull, R.A.: MIPC as formalisation of an intuitionist concept of modality. J. Symb. Log. 31, 609–616 (1966)
Caicedo, X., Metcalfe, G., Rodríguez, R., Rogger, J.: Decidability in order-based modal logics. J. Comput. Syst. Sci. 88, 53–74 (2017)
Caicedo, X., Rodríguez, R.: Bi-modal Gödel logic over [0,1]-valued Kripke frames. J. Log. Comput. 25(1), 37–55 (2015)
Corsi, G.: Completeness theorem for Dummett’s LC quantified. Studia Logica 51, 317–335 (1992)
Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics. Elsevier, Amsterdam (2003)
Görnemann, S.: A logic stronger than intuitionism. J. Symb. Log. 36(2), 249–261 (1971)
Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Log. 34(3), 395–409 (1969)
Iemhoff, R.: A note on linear Kripke models. J. Log. Comput. 15(4), 489–506 (2005)
Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Crossley, J.N., Dummett, M.A.E. (eds.) Formal Systems and Recursive Functions, Studies in Logic and the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier (1965)
Ono, H.: On some intuitionistic modal logics. Publ. RIMS, Kyoto Univ. 13, 687–722 (1977)
Ono, H., Suzuki, N.-Y.: Relations between intuitionistic modal logics and intermediate predicate logics. Rep. Math. Log. 22, 65–87 (1988)
Suzuki, N.-Y.: Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics. Studia Logica 49(3), 289–306 (1990)
Takano, M.: Ordered sets R and Q as bases of Kripke models. Studia Logica 46, 137–148 (1987)
Acknowledgements
The second and fourth authors were supported by the Swiss National Science Foundation grant 200021\(\_\)165850, the first author by the Universidad de los Andes Science Faculty Research Fund, and the third author by the research projects PIP 112-20150100412CO, CONICET, UBA-CyT 20020150100002BA and PICT/O 2016-0215. The authors have also received funding from the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 689176.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer-Verlag GmbH Germany, part of Springer Nature
About this paper
Cite this paper
Caicedo, X., Metcalfe, G., Rodríguez, R., Tuyt, O. (2019). The One-Variable Fragment of Corsi Logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-59533-6_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-59532-9
Online ISBN: 978-3-662-59533-6
eBook Packages: Computer ScienceComputer Science (R0)