Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The One-Variable Fragment of Corsi Logic

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

The one-variable fragment of the first-order logic of linear intuitionistic Kripke models, referred to here as Corsi logic, is shown to have as its modal counterpart the many-valued modal logic \(\mathsf {S5(\mathbf {G})}\). It is also shown that \(\mathsf {S5(\mathbf {G})}\) can be interpreted in the crisp many-valued modal logic \(\mathsf {S5(\mathbf {G})^C}\), the modal counterpart of the one-variable fragment of first-order Gödel logic. Finally, an algebraic finite model property is proved for \(\mathsf {S5(\mathbf {G})^C}\) and used to establish co-NP-completeness for validity in the aforementioned modal logics and one-variable fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logics. J. Symb. Log. 72, 26–44 (2007)

    Article  Google Scholar 

  2. Bezhanishvili, G.: Varieties of monadic Heyting algebras - part I. Studia Logica 61(3), 367–402 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bou, F., Esteva, F., Godo, L., Rodriguez, R.O.: Possibilistic semantics for a modal KD45 extension of Gödel fuzzy logic. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 123–135. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40581-0_11

    Chapter  Google Scholar 

  4. Bull, R.A.: MIPC as formalisation of an intuitionist concept of modality. J. Symb. Log. 31, 609–616 (1966)

    Article  MathSciNet  Google Scholar 

  5. Caicedo, X., Metcalfe, G., Rodríguez, R., Rogger, J.: Decidability in order-based modal logics. J. Comput. Syst. Sci. 88, 53–74 (2017)

    Article  Google Scholar 

  6. Caicedo, X., Rodríguez, R.: Bi-modal Gödel logic over [0,1]-valued Kripke frames. J. Log. Comput. 25(1), 37–55 (2015)

    Article  Google Scholar 

  7. Corsi, G.: Completeness theorem for Dummett’s LC quantified. Studia Logica 51, 317–335 (1992)

    Article  MathSciNet  Google Scholar 

  8. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  9. Görnemann, S.: A logic stronger than intuitionism. J. Symb. Log. 36(2), 249–261 (1971)

    Article  MathSciNet  Google Scholar 

  10. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Log. 34(3), 395–409 (1969)

    Article  MathSciNet  Google Scholar 

  11. Iemhoff, R.: A note on linear Kripke models. J. Log. Comput. 15(4), 489–506 (2005)

    Article  MathSciNet  Google Scholar 

  12. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Crossley, J.N., Dummett, M.A.E. (eds.) Formal Systems and Recursive Functions, Studies in Logic and the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier (1965)

    Google Scholar 

  13. Ono, H.: On some intuitionistic modal logics. Publ. RIMS, Kyoto Univ. 13, 687–722 (1977)

    Article  MathSciNet  Google Scholar 

  14. Ono, H., Suzuki, N.-Y.: Relations between intuitionistic modal logics and intermediate predicate logics. Rep. Math. Log. 22, 65–87 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Suzuki, N.-Y.: Kripke bundles for intermediate predicate logics and Kripke frames for intuitionistic modal logics. Studia Logica 49(3), 289–306 (1990)

    Article  MathSciNet  Google Scholar 

  16. Takano, M.: Ordered sets R and Q as bases of Kripke models. Studia Logica 46, 137–148 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second and fourth authors were supported by the Swiss National Science Foundation grant 200021\(\_\)165850, the first author by the Universidad de los Andes Science Faculty Research Fund, and the third author by the research projects PIP 112-20150100412CO, CONICET, UBA-CyT 20020150100002BA and PICT/O 2016-0215. The authors have also received funding from the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 689176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Metcalfe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caicedo, X., Metcalfe, G., Rodríguez, R., Tuyt, O. (2019). The One-Variable Fragment of Corsi Logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics