Abstract
In the era of digital transformation, new technological foundations and possibilities for collaboration, production as well as organization open up many opportunities to work differently in the future. The digitization of workflows results in new forms of working which is denoted by the term Work 4.0. In the context of Work 4.0, digital assistance systems play an important role as they give users additional situation-specific information about a workflow or a product via displays, mobile devices such as tablets and smartphones, or data glasses.
Furthermore, such digital assistance systems can be used to provide instructions and technical support in the working process as well as for training purposes. However, existing digital assistance systems are mostly created focusing on the “design for all” paradigm neglecting the situation-specific tasks, skills, preferences, or environments of an individual human worker. To overcome this issue, we present a monitoring and adaptation framework for supporting self-adaptive digital assistance systems for Work 4.0. Our framework supports context monitoring as well as UI adaptation for augmented (AR) and virtual reality (VR)-based digital assistance systems. The benefit of our framework is shown based on exemplary case studies from different domains, e.g. context-aware maintenance application in AR or warehouse management training in VR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonekamp, L., Sure, M.: Consequences of industry 4.0 on human labour and work organisation. Journal of Business and Media Psychology 6(1), 33–40 (2015)
De Vos, M.: Work 4.0 and the future of labour law. Available at SSRN 3217834 (2018)
Fellmann, M., Robert, S., Büttner, S., Mucha, H., Röcker, C.: Towards a framework for assistance systems to support work processes in smart factories. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E.R. (eds.) Machine Learning and Knowledge Extraction – First IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference, CD-MAKE 2017, Reggio di Calabria, Italy, August 29 – September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10410, pp. 59–68. Springer (2017). https://doi.org/10.1007/978-3-319-66808-6_5
Fischer, H., Senft, B., Rittmeier, F., Sauer, S.: A canvas method to foster interdisciplinary discussions on digital assistance systems. In: Marcus, A., Wang, W. (eds.) Design, User Experience, and Usability: Theory and Practice – 7th International Conference, DUXU 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, July 15–20, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10918, pp. 711–724. Springer (2018). https://doi.org/10.1007/978-3-319-91797-9_49
Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: 12th IEEE International Conference on Industrial Informatics, INDIN 2014, Porto Alegre, RS, Brazil, July 27–30, 2014. pp. 289–294. IEEE (2014). https://doi.org/10.1109/INDIN.2014.6945523
Gottschalk, S., Yigitbas, E., Schmidt, E., Engels, G.: Model-based product configuration in augmented reality applications. In: Bernhaupt, R., Ardito, C., Sauer, S. (eds.) Human-Centered Software Engineering – 8th IFIP WG 13.2 International Working Conference, HCSE 2020, Eindhoven, The Netherlands, November 30 – December 2, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12481, pp. 84–104. Springer (2020). https://doi.org/10.1007/978-3-030-64266-2_5
Gottschalk, S., Yigitbas, E., Schmidt, E., Engels, G.: Proconar: A tool support for model-based AR product configuration. In: Bernhaupt, R., Ardito, C., Sauer, S. (eds.) Human-Centered Software Engineering – 8th IFIP WG 13.2 International Working Conference, HCSE 2020, Eindhoven, The Netherlands, November 30 – December 2, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12481, pp. 207–215. Springer (2020). https://doi.org/10.1007/978-3-030-64266-2_14
Grubert, J., et al.: Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE Trans. Vis. Comput. Graph. 23(6), 1706–1724 (2017)
Hinrichsen, S., Bendzioch, S.: How digital assistance systems improve work productivity in assembly. In: International Conference on Applied Human Factors and Ergonomics. pp. 332–342. Springer (2018)
Hold, P., Erol, S., Reisinger, G., Sihn, W.: Planning and evaluation of digital assistance systems. Procedia Manufacturing 9, 143–150 (2017)
Hong, D., Shin, C., Oh, S., Woo, W.: A new paradigm for user interaction in ubiquitous computing environment. ISUVR 2006 pp. 41–44 (2006)
Josifovska, K., Yigitbas, E., Engels, G.: A digital twin-based multi-modal UI adaptation framework for assistance systems in industry 4.0. In: Kurosu, M. (ed.) Human-Computer Interaction. Design Practice in Contemporary Societies – Thematic Area, HCI 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11568, pp. 398–409. Springer (2019). https://doi.org/10.1007/978-3-030-22636-7_30
Jovanovikj, I., Yigitbas, E., Sauer, S., Engels, G.: Augmented and virtual reality object repository for rapid prototyping. In: Bernhaupt, R., Ardito, C., Sauer, S. (eds.) Human-Centered Software Engineering – 8th IFIP WG 13.2 International Working Conference, HCSE 2020, Eindhoven, The Netherlands, November 30 – December 2, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12481, pp. 216–224. Springer (2020). https://doi.org/10.1007/978-3-030-64266-2_15
Keller, T., Bayer, C., Bausch, P., Metternich, J.: Benefit evaluation of digital assistance systems for assembly workstations. Procedia CIRP 81, 441–446 (2019)
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055
Kovacs, K., Ansari, F., Geisert, C., Uhlmann, E., Glawar, R., Sihn, W.: A process model for enhancing digital assistance in knowledge-based maintenance. In: Beyerer, J., Kühnert, C., Niggemann, O. (eds.) Machine Learning for Cyber Physical Systems, Selected papers from the International Conference ML4CPS 2018, Karlsruhe, Germany, October 23–24, 2018. pp. 87–96. Springer (2018). https://doi.org/10.1007/978-3-662-58485-9_10
Krings, S., Yigitbas, E., Jovanovikj, I., Sauer, S., Engels, G.: Development framework for context-aware augmented reality applications. In: Bowen, J., Vanderdonckt, J., Winckler, M. (eds.) EICS ’20: ACM SIGCHI Symposium on Engineering Interactive Computing Systems, Sophia Antipolis, France, June 23–26, 2020. pp. 9:1–9:6. ACM (2020). https://doi.org/10.1145/3393672.3398640
Laddaga, R., Robertson, P.: Self adaptive software: A position paper. In: SELF-STAR: International Workshop on Self-* Properties in Complex Information Systems. vol. 31, p. 19. Citeseer (2004)
Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Business & information systems engineering 6(4), 239–242 (2014)
Lindlbauer, D., Feit, A.M., Hilliges, O.: Context-aware online adaptation of mixed reality interfaces. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST 2019, New Orleans, LA, USA, October 20–23, 2019. pp. 147–160 (2019)
Nelles, J., Kuz, S., Mertens, A., Schlick, C.M.: Human-centered design of assistance systems for production planning and control: The role of the human in industry 4.0. In: IEEE International Conference on Industrial Technology, ICIT 2016, Taipei, Taiwan, March 14–17, 2016. pp. 2099–2104. IEEE (2016). https://doi.org/10.1109/ICIT.2016.7475093
Nikolenko, A., Sehr, P., Hinrichsen, S., Bendzioch, S.: Digital assembly assistance systems–a case study. In: International Conference on Applied Human Factors and Ergonomics. pp. 24–33. Springer (2019)
Oh, S., Woo, W., et al.: Camar: Context-aware mobile augmented reality in smart space. Proc. of IWUVR 9, 48–51 (2009)
Paelke, V.: Augmented reality in the smart factory: Supporting workers in an industry 4.0. environment. In: Grau, A., Martínez, H. (eds.) Proceedings of the 2014 IEEE Emerging Technology and Factory Automation, ETFA 2014, Barcelona, Spain, September 16–19, 2014. pp. 1–4. IEEE (2014). https://doi.org/10.1109/ETFA.2014.7005252
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., Harnisch, M.: Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group 9(1), 54–89 (2015)
Salimi, M.: Work 4.0: An enormous potential for economic growth in germany. ADAPT Bulletin 16 (2015)
Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. International Journal of Production Research 56(8), 2941–2962 (2018)
Yigitbas, E., et al.: Self-adaptive UIs: Integrated model-driven development of UIs and their adaptations. In: Proc. of the ECMFA 2017. pp. 126–141 (2017)
Yigitbas, E., Anjorin, A., Jovanovikj, I., Kern, T., Sauer, S., Engels, G.: Usability evaluation of model-driven cross-device web user interfaces. In: Bogdan, C., Kuusinen, K., Lárusdóttir, M.K., Palanque, P.A., Winckler, M. (eds.) Human-Centered Software Engineering – 7th IFIP WG 13.2 International Working Conference, HCSE 2018, Sophia Antipolis, France, September 3–5, 2018, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11262, pp. 231–247. Springer (2018). https://doi.org/10.1007/978-3-030-05909-5_14
Yigitbas, E., Gorissen, S., Weidmann, N., Engels, G.: Collaborative software modeling in virtual reality. CoRR abs/2107.12772 (2021), https://arxiv.org/abs/2107.12772
Yigitbas, E., Heindörfer, J., Engels, G.: A context-aware virtual reality first aid training application. In: Alt, F., Bulling, A., Döring, T. (eds.) Proc. of Mensch und Computer 2019. pp. 885–888. GI/ACM (2019)
Yigitbas, E., Hottung, A., Rojas, S.M., Anjorin, A., Sauer, S., Engels, G.: Context- and data-driven satisfaction analysis of user interface adaptations based on instant user feedback. Proc. ACM Hum. Comput. Interact. 3(EICS), 19:1–19:20 (2019). https://doi.org/10.1145/3331161
Yigitbas, E., Josifovska, K., Jovanovikj, I., Kalinci, F., Anjorin, A., Engels, G.: Component-based development of adaptive user interfaces. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2019, Valencia, Spain, June 18-21, 2019. pp. 13:1–13:7 (2019)
Yigitbas, E., Jovanovikj, I., Engels, G.: Simplifying robot programming using augmented reality and end-user development. In: Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G., Inkpen, K. (eds.) Human-Computer Interaction – INTERACT 2021 – 18th IFIP TC 13 International Conference, Bari, Italy, August 30 – September 3, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12932, pp. 631–651. Springer (2021). https://doi.org/10.1007/978-3-030-85623-6_36
Yigitbas, E., Jovanovikj, I., Sauer, S., Engels, G.: On the development of context-aware augmented reality applications. In: Abdelnour-Nocera, J.L., Parmaxi, A., Winckler, M., Loizides, F., Ardito, C., Bhutkar, G., Dannenmann, P. (eds.) Beyond Interactions – INTERACT 2019 IFIP TC 13 Workshops, Paphos, Cyprus, September 2–6, 2019, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11930, pp. 107–120. Springer (2019). https://doi.org/10.1007/978-3-030-46540-7_11
Yigitbas, E., Jovanovikj, I., Scholand, J., Engels, G.: VR training for warehouse management. In: Teather, R.J., Joslin, C., Stuerzlinger, W., Figueroa, P., Hu, Y., Batmaz, A.U., Lee, W., Ortega, F.R. (eds.) VRST ’20: 26th ACM Symposium on Virtual Reality Software and Technology. pp. 78:1–78:3. ACM (2020)
Yigitbas, E., Karakaya, K., Jovanovikj, I., Engels, G.: Enhancing human-in-the-loop adaptive systems through digital twins and VR interfaces. In: 16th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2021, Madrid, Spain, May 18–24, 2021. pp. 30–40. IEEE (2021). https://doi.org/10.1109/SEAMS51251.2021.00015
Yigitbas, E., Klauke, J., Gottschalk, S., Engels, G.: VREUD - an end-user development tool to simplify the creation of interactive VR scenes. CoRR abs/2107.00377 (2021), https://arxiv.org/abs/2107.00377
Yigitbas, E., Sauer, S.: Engineering context-adaptive uis for task-continuous cross-channel applications. In: Human-Centered and Error-Resilient Systems Development – IFIP WG 13.2/13.5 Joint Working Conference. pp. 281–300 (2016)
Yigitbas, E., Sauer, S., Engels, G.: Using augmented reality for enhancing planning and measurements in the scaffolding business. In: EICS ’21: ACM SIGCHI Symposium on Engineering Interactive Computing Systems, virtual, June 8–11, 2021. ACM (2021), https://doi.org/10.1145/3459926.3464747
Yigitbas, E., Tejedor, C.B., Engels, G.: Experiencing and programming the ENIAC in VR. In: Alt, F., Schneegass, S., Hornecker, E. (eds.) Mensch und Computer 2020. pp. 505–506. ACM (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature
About this chapter
Cite this chapter
Yigitbas, E., Sauer, S., Engels, G. (2023). Self-Adaptive Digital Assistance Systems for Work 4.0. In: Vogel-Heuser, B., Wimmer, M. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65004-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-662-65004-2_19
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-65003-5
Online ISBN: 978-3-662-65004-2
eBook Packages: Computer ScienceComputer Science (R0)