Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

We present here the Radial Basis Function Gene Model as a new approach of evolutionary computation. This model enables us to relax the “locus constraint” that limits classical genetic algorithms. Both the principles and first results are presented, showing the great interest of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Betran and M. Long. Expension of genome coding regions by acquisition of new genes. Genetica, 115:65–80, 2002.

    Article  Google Scholar 

  2. E.A. Birge. Bacterial and Bacteriophage Genetics (4th Edition). Springer-Verlag, 2000.

    Google Scholar 

  3. J. Davison. Genetic exchange between bacteria in the environment. Plasmid, 42(2):73–91, 1999.

    Article  Google Scholar 

  4. D.E. Goldberg. Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, 1989.

    Google Scholar 

  5. D. Graur and H. Li. Fundamentals of Molecular Evolution (2nd Edition). Sinauer Associates Inc., 1999.

    Google Scholar 

  6. S.S. Haykin. Neural Networks, A comprehensive foundation. Prentice-Hall, 1999.

    Google Scholar 

  7. E.V. Koonin and M.Y. Galperin. Prokaryotic genomes: The emerging paradigm of genome-based microbiology. Current Opinin in Genetics and Developement, 7(6):757–763,1997.

    Article  Google Scholar 

  8. S. Krawiec and M. Riley. Organization of the bacterial chromosome. Microbiological Review, 54(4):502–539, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Beslon, G., Knibbe, C., Soula, H., Fayard, JM. (2003). The RBF-Gene Model. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0646-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0646-4_34

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00743-3

  • Online ISBN: 978-3-7091-0646-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics