Abstract
In this paper, we present a multiresolution algorithm which is capable to render multiple transparent isosurfaces under real-time constraints. To this end, the underlying 3D data set is covered with a hierarchical tetrahedral grid. The multiresolution extraction algorithm is then based on an adaptive traversal of the tetrahedral grid with the help of error indicators. The display of transparent isosurfaces using alpha blending requires a back-to-front rendering of the isosurface triangles. This is achieved by a hierarchical sorting procedure of the tetrahedra and the hierarchical computation of data gradients. We will also comment on the automated selection of suitable isovalues for visualization applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. Bajaj, V. Pascucci, and D. Schikore. Accelerated Isocontouring of Scalar Fields. In C. Bajaj, editor, Data Visualization Techniques. John Wiley and Sons, 1998.
P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Representation and Visualization of Volume Data. IEEE Transactions on Visualization and Computer Graphics, 3(4):352–369, 1997.
F. Dong, M. Krokos, and G. Clapworthy. Fast Volume Rendering and Data Classification using Multiresolution Min-Max Octrees. Computer Graphics Forum, 19(3):359–367, 2000.
T. Ertl, R. Westermann, and R. Grosso. Multiresolution and Hierarchical Methods for the Visualization of Volume Data. Future Generation Computer Systems, 15(1):31–42, 1999.
T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction. In Proc. IEEE Visualization 2000, pages 259–266. IEEE Computer Society Press, 2000.
T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction based on Tetrahedral Bisection. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 267–278. Springer, 2000.
T. Gerstner, M. Rumpf, and U. Weikard. Error Indicators for Multilevel Visualization and Computing on Nested Grids. Computers&Graphics, 24(3):363–373, 2000.
R. Grosso, C. Lürig, and T. Ertl. The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data. In Proc. IEEE Visualization’ 97, pages 387-394. IEEE Computer Society Press, 1997.
B. Guo. A Multiscale Model for Structure-based Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 1(4):291–301, 1995.
D. Holliday and G. Nielson. Progressive Volume Model for Rectilinear Data using Tetrahedral Coons Volumes. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 83–92. Springer, 2000.
U.E. LaMar, B. Hamann, and K. Joy. Multiresolution Techniques for Interactive Texture-based Volume Visualization. In Proc. IEEE Visualization’ 99, pages 355–362. IEEE Press, 1999.
D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering. Computer Graphics (SIGGRAPH’ 91 Proc), pages 285–288, 1991.
L. Lippert and M. Gross. Fast Wavelet based Volume Rendering by Accumulation of Transparent Texture Maps. Computer Graphics Forum, 14(3):431–444, 1995.
Y. Livnat, H. Shen, and C. Johnson. A Near Optimal Isosurface Extraction Algorithm using the Span Space. IEEE Trans. on Visualization and Computer Graphics, 2(1):73–83, 1996.
W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4):163–169, 1987.
J. Maubach. Local Bisection Refinement for n-simplicial Grids generated by Reflection. SIAM J. Sci. Comp., 16:210–227, 1995.
M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical Evaluation of Popular Volume Rendering Algorithms. In Proc. Volume Visualization 2000, pages 81–91. ACM Press, 2000.
S. Muraki. Approximation and Rendering of Volume Data using Wavelet Transforms. Computer Graphics and Applications, 13(4):50–56, 1993.
M. Ohlberger and M. Rumpf. Adaptive Projection Methods in Multiresolutional Scientific Visualization. IEEE Trans, on Visualization and Computer Graphics, 4(4):74–94, 1998.
V Pascucci and C. Bajaj. Time Critical Isosurface Refinement and Smoothing. In Proc. Volume Visualization 2000, pages 33–42. ACM Press, 2000.
B. Payne and A. Toga. Surface Mapping Brain Function on 3D Models. IEEE Computer Graphics and Applications, 10(5):33–41, 1990.
H. Pfister (org.), B. Lorensen, C. Bajaj, G. Kindlmann, and W. Schroeder. The Transfer Function Bake-Off. Panel session at IEEE Visualization’ 00, 2000.
M. Rivara and C. Levin. A 3D Refinement Algorithm suitable for Adaptive and Multi-Grid Techniques. Comm. Appl. Num. Meth., 8:281–290, 1992.
R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based Decimation of Marching Cubes Surfaces. In Proc. IEEE Visualization’ 96, pages 335–344. IEEE Press, 1996.
O. Staadt, M. Gross, and R. Weber. Multiresolution Compression and Reconstruction. In Proc. IEEE Visualization’ 97, pages 337–364. IEEE Computer Society Press, 1997.
P. Sutton, C. Hansen, H.-W Shen, and D. Schikore. A Case Study of Isosurface Extraction Algorithm Performance. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 259–268. Springer, 2000.
M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T Ertl. Level-of-Detail Volume Rendering via 3D Textures. In Proc. Volume Vis. 2000, pages 7–13. ACM Press, 2000.
R. Westermann. A Multiresolution Framework for Volume Rendering. In Proc. Volume Visualization 94, pages 51–57. ACM Press, 1994.
R. Westermann, L. Kobbelt, and T. Ertl. Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces. The Visual Computer, 15:100–111, 1999.
J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. ACM Transactions on Graphics, 11(3):201–227, 1992.
Y. Yang, F. Lin, and H. Seah. Fast Multi-Resolution Volume Rendering. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 185–197. Springer, 2000.
Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework for Visualizing Volume Data. In Proc. IEEE Visualization’ 97, pages 135–142. IEEE Press, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Wien
About this paper
Cite this paper
Gerstner, T. (2001). Fast Multiresolution Extraction of Multiple Transparent Isosurfaces. In: Ebert, D.S., Favre, J.M., Peikert, R. (eds) Data Visualization 2001. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6215-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-7091-6215-6_5
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-83674-3
Online ISBN: 978-3-7091-6215-6
eBook Packages: Springer Book Archive