Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Multiresolution Extraction of Multiple Transparent Isosurfaces

  • Conference paper
Data Visualization 2001

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

In this paper, we present a multiresolution algorithm which is capable to render multiple transparent isosurfaces under real-time constraints. To this end, the underlying 3D data set is covered with a hierarchical tetrahedral grid. The multiresolution extraction algorithm is then based on an adaptive traversal of the tetrahedral grid with the help of error indicators. The display of transparent isosurfaces using alpha blending requires a back-to-front rendering of the isosurface triangles. This is achieved by a hierarchical sorting procedure of the tetrahedra and the hierarchical computation of data gradients. We will also comment on the automated selection of suitable isovalues for visualization applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Bajaj, V. Pascucci, and D. Schikore. Accelerated Isocontouring of Scalar Fields. In C. Bajaj, editor, Data Visualization Techniques. John Wiley and Sons, 1998.

    Google Scholar 

  2. P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Representation and Visualization of Volume Data. IEEE Transactions on Visualization and Computer Graphics, 3(4):352–369, 1997.

    Article  Google Scholar 

  3. F. Dong, M. Krokos, and G. Clapworthy. Fast Volume Rendering and Data Classification using Multiresolution Min-Max Octrees. Computer Graphics Forum, 19(3):359–367, 2000.

    Article  Google Scholar 

  4. T. Ertl, R. Westermann, and R. Grosso. Multiresolution and Hierarchical Methods for the Visualization of Volume Data. Future Generation Computer Systems, 15(1):31–42, 1999.

    Article  Google Scholar 

  5. T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction. In Proc. IEEE Visualization 2000, pages 259–266. IEEE Computer Society Press, 2000.

    Google Scholar 

  6. T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction based on Tetrahedral Bisection. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 267–278. Springer, 2000.

    Google Scholar 

  7. T. Gerstner, M. Rumpf, and U. Weikard. Error Indicators for Multilevel Visualization and Computing on Nested Grids. Computers&Graphics, 24(3):363–373, 2000.

    Google Scholar 

  8. R. Grosso, C. Lürig, and T. Ertl. The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data. In Proc. IEEE Visualization’ 97, pages 387-394. IEEE Computer Society Press, 1997.

    Google Scholar 

  9. B. Guo. A Multiscale Model for Structure-based Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 1(4):291–301, 1995.

    Article  Google Scholar 

  10. D. Holliday and G. Nielson. Progressive Volume Model for Rectilinear Data using Tetrahedral Coons Volumes. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 83–92. Springer, 2000.

    Google Scholar 

  11. U.E. LaMar, B. Hamann, and K. Joy. Multiresolution Techniques for Interactive Texture-based Volume Visualization. In Proc. IEEE Visualization’ 99, pages 355–362. IEEE Press, 1999.

    Google Scholar 

  12. D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering. Computer Graphics (SIGGRAPH’ 91 Proc), pages 285–288, 1991.

    Google Scholar 

  13. L. Lippert and M. Gross. Fast Wavelet based Volume Rendering by Accumulation of Transparent Texture Maps. Computer Graphics Forum, 14(3):431–444, 1995.

    Article  Google Scholar 

  14. Y. Livnat, H. Shen, and C. Johnson. A Near Optimal Isosurface Extraction Algorithm using the Span Space. IEEE Trans. on Visualization and Computer Graphics, 2(1):73–83, 1996.

    Article  Google Scholar 

  15. W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4):163–169, 1987.

    Article  Google Scholar 

  16. J. Maubach. Local Bisection Refinement for n-simplicial Grids generated by Reflection. SIAM J. Sci. Comp., 16:210–227, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical Evaluation of Popular Volume Rendering Algorithms. In Proc. Volume Visualization 2000, pages 81–91. ACM Press, 2000.

    Google Scholar 

  18. S. Muraki. Approximation and Rendering of Volume Data using Wavelet Transforms. Computer Graphics and Applications, 13(4):50–56, 1993.

    Article  Google Scholar 

  19. M. Ohlberger and M. Rumpf. Adaptive Projection Methods in Multiresolutional Scientific Visualization. IEEE Trans, on Visualization and Computer Graphics, 4(4):74–94, 1998.

    Article  Google Scholar 

  20. V Pascucci and C. Bajaj. Time Critical Isosurface Refinement and Smoothing. In Proc. Volume Visualization 2000, pages 33–42. ACM Press, 2000.

    Google Scholar 

  21. B. Payne and A. Toga. Surface Mapping Brain Function on 3D Models. IEEE Computer Graphics and Applications, 10(5):33–41, 1990.

    Article  Google Scholar 

  22. H. Pfister (org.), B. Lorensen, C. Bajaj, G. Kindlmann, and W. Schroeder. The Transfer Function Bake-Off. Panel session at IEEE Visualization’ 00, 2000.

    Google Scholar 

  23. M. Rivara and C. Levin. A 3D Refinement Algorithm suitable for Adaptive and Multi-Grid Techniques. Comm. Appl. Num. Meth., 8:281–290, 1992.

    Article  MATH  Google Scholar 

  24. R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based Decimation of Marching Cubes Surfaces. In Proc. IEEE Visualization’ 96, pages 335–344. IEEE Press, 1996.

    Google Scholar 

  25. O. Staadt, M. Gross, and R. Weber. Multiresolution Compression and Reconstruction. In Proc. IEEE Visualization’ 97, pages 337–364. IEEE Computer Society Press, 1997.

    Google Scholar 

  26. P. Sutton, C. Hansen, H.-W Shen, and D. Schikore. A Case Study of Isosurface Extraction Algorithm Performance. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 259–268. Springer, 2000.

    Google Scholar 

  27. M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T Ertl. Level-of-Detail Volume Rendering via 3D Textures. In Proc. Volume Vis. 2000, pages 7–13. ACM Press, 2000.

    Google Scholar 

  28. R. Westermann. A Multiresolution Framework for Volume Rendering. In Proc. Volume Visualization 94, pages 51–57. ACM Press, 1994.

    Google Scholar 

  29. R. Westermann, L. Kobbelt, and T. Ertl. Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces. The Visual Computer, 15:100–111, 1999.

    Article  Google Scholar 

  30. J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. ACM Transactions on Graphics, 11(3):201–227, 1992.

    Article  MATH  Google Scholar 

  31. Y. Yang, F. Lin, and H. Seah. Fast Multi-Resolution Volume Rendering. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 185–197. Springer, 2000.

    Google Scholar 

  32. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework for Visualizing Volume Data. In Proc. IEEE Visualization’ 97, pages 135–142. IEEE Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Gerstner, T. (2001). Fast Multiresolution Extraction of Multiple Transparent Isosurfaces. In: Ebert, D.S., Favre, J.M., Peikert, R. (eds) Data Visualization 2001. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6215-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6215-6_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83674-3

  • Online ISBN: 978-3-7091-6215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics