Abstract
In the areas of Genetic Algorithms, Artificial Life and Animats, genetic material is often represented as a fixed size sequence of genes with alleles of 0 and 1. This is in accord with the ‘principle of meaningful building blocks’. The principle suggests that epistatically related genes should be positioned very close to one another. However, in situations in which gene dependency information cannot be determined a priori, a Genetic Algorithm that uses a static, list chromosome structure will often not work. The problem of determining gene dependencies is itself a search problem, and seems well suited for the application of a Genetic Algorithm. In this paper, we propose a self-organizing Genetic Algorithm, and, after describing four different chromosome representations, show that the best one for a Genetic Algorithm to use to coevolve the organization and contents (gene dependencies and values) of a chromosome is a hierarchy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
Rizki, M.M. & Conrad, M., Computing The Theory of Evolution, Physica D, 22, 83–89, 1986.
Calloway, D.L., Using a Genetic Algorithm to Design Binary Phase-Only Filters for Pattern Recognition, Proceedings of the fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 422–427, 1991.
Nakano, R., Conventional Genetic Algorithm for Job Shop Problem, Proceedings of the fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 474–479, 1991.
Grefenstette, J.J., A System for Learning Control Strategies with Genetic Algorithms, Proceedings of the third International Conference on Genetic Algorithms, Morgan Kaufmann, 183–190, 1989.
Gabbert, P.S., Brown, D.E., Huntley, C.L., Markowicz, B.P., and Sappington, D.E., A System for Learning Routes and Schedules with Genetic Algorithms, Proceedings of the fourth International Conference on Genetic Algorithms, Morgan Kaufmann, 430–436, 1991.
Syswerda, G., Uniform Crossover in Genetic Algorithms, Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, 2–9, 1989.
Ackley, D.H., An Empirical Study of Bit Vector Function Optimization. In Lawrence Davis (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufmann, 170–204, 1987.
Knuth, D.E., The Art of Computer Programming: Fundamental Algorithms. V:1, Addison-Wesley Publishing Company, 391, 1973.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer-Verlag/Wien
About this paper
Cite this paper
Oppacher, F., Deugo, D. (1995). Automatic Change of Representation in Genetic Algorithms. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7535-4_58
Download citation
DOI: https://doi.org/10.1007/978-3-7091-7535-4_58
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-82692-8
Online ISBN: 978-3-7091-7535-4
eBook Packages: Springer Book Archive