Abstract
We present a dynamical architecture for a Radial Basis Function Network. The scheme is based on the Simulated Annealing procedure for learning. Increase of performances with respect to classical methods and opportunity to vary the size of the network are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AArts E., Korst J.: Simulated annealing and Boltzmann Machine. John Wiley & Sons, (1989).
Buhman J, Kuhnel H.: Neural Comp., 5, 75, (1993).
Hampshire J. B., Pearlmutter B.: Proceedings of the 1990 connectionnist models summer school, Morgan Kaufmann, 159, (1990).
Kirkpatrick S., Gelatt C., Vecchi M.: Science 220, 671, (1983).
LemariĆ© B.: IJCNNā93, 331, (1993).
Moody J., Darken C. J.: Neural Comp., 1, 281, (1989).
Ng, Lipmann R.P.: NIPS 3, (1991).
Poggio T., Girosi F.: Proceedings of the IEEE, 78, 9, (1990).
Rose K., Gurewitz E., Fox G. C.: Physic. Rev. Let., 65, 945, (1990)
Zang Q.: IRISA, internal report No 709, France, (1993).
Author information
Authors and Affiliations
Rights and permissions
Copyright information
Ā© 1995 Springer-Verlag/Wien
About this paper
Cite this paper
LemariƩ, B., Debroise, AG. (1995). A Dynamical Architecture for a Radial Basis Function Network. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7535-4_80
Download citation
DOI: https://doi.org/10.1007/978-3-7091-7535-4_80
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-82692-8
Online ISBN: 978-3-7091-7535-4
eBook Packages: Springer Book Archive