Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DetMCD in a Calibration Framework

  • Conference paper
  • First Online:
Proceedings of COMPSTAT'2010

Abstract

The minimum covariance determinant (MCD) method is a robust estimator of multivariate location and scatter (Rousseeuw (1984)). Computing the exact MCD is very hard, so in practice one resorts to approximate algorithms. Most often the FASTMCD algorithm of Rousseeuw and Van Driessen (1999) is used. The FASTMCD algorithm is affine equivariant but not permutation invariant. Recently a deterministic algorithm, denoted as DetMCD, is developed which does not use random subsets and which is much faster (Hubert et al. (2010)). In this paper DetMCD is illustrated in a calibration framework. We focus on robust principal component regression and partial least squares regression, two very popular regression techniques for collinear data. We also apply DetMCD on data with missing elements after plugging it into the M-RPCR technique of Serneels and Verdonck (2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • BURNHAM, A.J., MACGREGOR, J.F. and VIVEROS, R. (1999): Latent variable multivariate regression modeling. Chemometrics and Intelligent Laboratory Systems 48(2), 167-180.

    Article  Google Scholar 

  • DE JONG, S. (1993): SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems 18, 251-263.

    Article  Google Scholar 

  • HUBERT, M., ROUSSEEUW, P.J. and VANDEN BRANDEN, K. (2005): ROBPCA: a new approach to robust principal component analysis. Technometrics 47, 64-79.

    Article  MathSciNet  Google Scholar 

  • HUBERT, M., ROUSSEEUW, P.J. and VERDONCK, T. (2010): A deterministic algorithm for the MCD. Submitted.

    Google Scholar 

  • HUBERT, M. and VANDEN BRANDEN, K. (2003): Robust methods for partial least squares regression. Journal of Chemometrics 17, 537-549.

    Article  Google Scholar 

  • HUBERT, M. and VERBOVEN, S. (2003): A robust PCR method for high-dimensional regressors. Journal of Chemometrics 17, 438-452.

    Article  Google Scholar 

  • MARONNA, R.A. and ZAMAR, R.H. (2002): Robust estimates of location and dispersion for high-dimensional data sets. Technometrics 44, 307-317.

    Article  MathSciNet  Google Scholar 

  • ROUSSEEUW, P.J. (1984): Least median of squares regression. Journal of the American Statistical Association 79, 871-880.

    Article  MathSciNet  MATH  Google Scholar 

  • ROUSSEEUW, P.J. and CROUX, C. (1993): Alternatives to the median absolute deviation. Journal of the American Statistical Association 88, 1273-1283.

    Article  MathSciNet  MATH  Google Scholar 

  • ROUSSEEUW, P.J., VAN AELST, S., VAN DRIESSEN, K. and AGULLO, J. (2004) Robust multivariate regression. Technometrics 46, 293-305.

    Article  MathSciNet  Google Scholar 

  • ROUSSEEUW, P.J. and VAN DRIESSEN, K. (1999): A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212-223.

    Article  Google Scholar 

  • SERNEELS, S. and VERDONCK, T. (2009): Principal component regression for data containing outliers and missing elements. Computational Statistics and Data Analysis 53(11), 3855-3863.

    Article  MathSciNet  MATH  Google Scholar 

  • VERBOVEN, S. and HUBERT, M. (2005): LIBRA: a Matlab library for robust analysis. Chemometrics and Intelligent Laboratory Systems 75, 127-136.

    Article  Google Scholar 

  • VISURI, S., KOIVUNEN, V. and OJA, H. (2000): Sign and rank covariance matrices. Journal of Statistical Planning and Inference 91, 557-575.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Verdonck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verdonck, T., Hubert, M., Rousseeuw, P.J. (2010). DetMCD in a Calibration Framework. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_61

Download citation

Publish with us

Policies and ethics