Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biologically–Inspired Network Architecture for Future Networks

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

Abstract

An architecture for future networks (often referred to as new–generation networks, or the future Internet), is now actively discussed in a “clean–slate” fashion. That is, the future network architecture could be differently from the current Internet architecture to overcome its problems. We first discuss why such an approach is necessary, and how we can reach a new era of information networks. Then, we introduce our approach towards the new network architecture. It is a biologically–inspired self–organizing network. Its robustness and adaptiveness attained by the bio–inspired approach is quite useful for satisfying the requirement of the future networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  2. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research (JAIR) 9, 317–365 (1998)

    MATH  Google Scholar 

  3. Leibnitz, K., Wakamiya, N., Murata, M.: Biologically–Inspired Self–Adaptive Multi–Path Routing in Overlay Networks. CACM 49(3), 62–67 (2006)

    Google Scholar 

  4. Hasegawa, G., Murata, M.: TCP Symbiosis: Congestion Control Mechanisms of TCP based on Lotka–Volterra Competition Model. In: Proc. of Workshop on Interdisciplinary Systems Approach in Performance Evaluation and Design of Computer & Communications Systems (2006)

    Google Scholar 

  5. Koizumi, Y., Miyamura, T., Arakawa, S., Oki, E., Shiomoto, K., Murata, M.: Application of Attractor Selection to Adaptive Virtual Network Topology Control. In: Proc. of ACM 3rd International Conference on Bio–Inspired Models of Network, Information, and Computing Systems (2008)

    Google Scholar 

  6. Wakamiya, N., Hyodo, K., Murata, M.: Reaction–diffusion based Topology Self–organization for Periodic Data Gathering in Wireless Sensor Networks. In: Proc. of Second IEEE International Conference on Self–Adaptive and Self–Organizing Systems (2008)

    Google Scholar 

  7. Sugano, M., Kiri, Y., Murata, M.: Differences in Robustness of Self–Organized Control and Centralized Control in Sensor Networks Caused by Differences in Control Dependence. In: Proc. of the Third International Conference on Systems and Networks Communications, ICSNC 2008 (2008)

    Google Scholar 

  8. Kashiwagi, A., Urabe, I., Kaneko, K., Yomo, T.: Adaptive Response of a Gene Network to Environmental Changes by Fitness–induced Attractor Selection. Plos ONE 1(1), e49 (2006)

    Article  Google Scholar 

  9. Leibnitz, K., Wakamiya, N., Murata, M.: A Bio-Inspired Robust Routing Protocol for Mobile Ad Hoc Networks. In: Proc. of 16th International Conference on Computer Communications and Networks (ICCCN 2007), pp. 321–326 (2007)

    Google Scholar 

  10. De Wolf, T., Holvoet, T.: Emergence Versus Self-Organisation: Different Concepts but Promising When Combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005)

    Google Scholar 

  11. Global COE Program, Center for Excellence for Founding Ambient Information Society Infrastructure, http://www.ist.osaka-u.ac.jp/GlobalCOE

  12. Murata, M.: Towards Establishing Ambient Network Environment. IEICE Transactions on Communications E92.B(4), 1070–1076 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Murata, M. (2010). Biologically–Inspired Network Architecture for Future Networks. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics