Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Foraging Behaviors and Potential Computational Ability of Problem-Solving in an Amoeba

  • Conference paper
Natural Computing

Abstract

We study cell behaviors in the complex situations: multiple locations of food were simultaneously given. An amoeba-like organism of true slime mold gathered at the multiple food locations while body shape made of tubular network was totally changed. Then only a few tubes connected all of food locations through a network shape. By taking the network shape of body, the plasmodium could meet its own physiological requirements: as fast absorption of nutrient as possible and sufficient circulation of chemical signals and nutrients through a whole body. Optimality of network shape was evaluated in relation to a combinatorial optimization problem. Here we reviewed the potential computational ability of problem-solving in the amoeba, which was much higher than we’d though. The main message of this article is that we had better to change our stupid opinion that an amoeba is stupid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bray, D.: Wetware. Oxford University Press, Oxford (2009)

    Google Scholar 

  2. Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  3. Nakagaki, T., Yamada, H., Tóth, Á.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92, 47–52 (2001)

    Article  Google Scholar 

  4. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophys. Chem. 107, 1–5 (2004)

    Article  Google Scholar 

  5. Nakagaki, T., Kobayashi, R., Ueda, T., Nishiura, Y.: Obtaining multiple separate food sources: behavioral intelligence in the Physarum plasmodium. Proc. R. Soc. Lond. B 271, 2305–2310 (2004)

    Article  Google Scholar 

  6. Nakagaki, T.: Smart behavior of true slime mold in labyrinth. Res. Microbiol. 152, 767–770 (2001)

    Article  Google Scholar 

  7. Nakagaki, T., Guy, R.: Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter 4, 1–12 (2008)

    Article  Google Scholar 

  8. Nakagaki, T., Tero, A., Kobayashi, R., Onishi, I., Miyaji, T.: Computational ability of cells based on cell dynamics and adaptability. New Generation Computing 27, 57–81 (2008)

    Article  Google Scholar 

  9. Tero, A., Kobayashi, R., Nakagaki, T.: Mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244, 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  10. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver -A biologically inspired method for road-network navigation. Physica A363, 115 (2006)

    Google Scholar 

  11. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99, 068104 (2007)

    Article  Google Scholar 

  12. Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in Physarum amoebae. Theory in Biosciences 127, 89–94 (2008)

    Article  Google Scholar 

  13. Tero, A., Nakagaki, T., Toyabe, K., Yumiki, K., Kobayashi, R.: A method inspired by Physarum for solving the Steiner problem. International Journal of Unconventional Computing (2009) (in press)

    Google Scholar 

  14. Tero, A., Takagi, T., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, Y., Kobayashi, R., Nakagaki, T.: Rules for biologically-inspired adaptive network design (submitted)

    Google Scholar 

  15. Nakagaki, T., Saigusa, T., Tero, A., Kobayashi, R.: Effects of food amount on path selection in transport network of an amoeboid organism. Topological Aspects of Critical Systems and Networks, 94–100 (2007)

    Google Scholar 

  16. Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern. Biophys. Chem. 84, 195–204 (2000)

    Article  Google Scholar 

  17. Kobayashi, R., Tero, A., Nakagaki, T.: Mathematical model for rhythmic amoeboid movement in the true slime mold. Journal of Mathematical Biology 53, 273–286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern. Biophys. Chem. 84, 195–204 (2000)

    Article  Google Scholar 

  19. Miyaji, T., Ohnishi, I.: Mathematical analysis to an adaptive network of the Plasmodium system. Hokkaido Mathematical Journal 36, 445–465 (2007)

    MathSciNet  Google Scholar 

  20. Miyaji, T., Ohnishi, I.: Physarum can solve the shortest path decision problem mathematically rigorously. International Journal of Pure and Applied Mathematics (in press)

    Google Scholar 

  21. Miyaji, T., Ohnishi, I., Tero, A., Nakagaki, T.: Failure to the shortest path decision of an adaptive transport network with double edges in Plasmodium system. International Journal of Dynamical Systems and Differential Equations 1, 210–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Physical Review Letters 100, 018101 (2008)

    Article  Google Scholar 

  23. Takagi, S., Nishiura, Y., Nakagaki, T., Ueda, T., Ueda, K.: Indecisive behavior of amoeba crossing an environmental barrier. In: Proceedings of Int. Symp. on Topological Aspects of Critical Systems and Networks, pp. 86–93. World Scientific Publishing Co., Singapore (2007)

    Chapter  Google Scholar 

  24. Trewavas, A.: Green plants as intelligent organisms. Trends Plant Sci. 10, 413–419 (2005)

    Article  Google Scholar 

  25. Trewavas, A.: Aspects of plant intelligence. Annals Bot. 92, 1–20 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Nakagaki, T. (2010). Foraging Behaviors and Potential Computational Ability of Problem-Solving in an Amoeba. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics