Abstract
To effectively act on the same physical space, robots must first communicate to share and fuse the map of the area in which they operate. For long-term online operation, the merging of maps from heterogeneous devices must be fast and allow for scalable growth in both the number of clients and the size of the map. This paper presents a system which allows multiple clients to share and merge maps built from a state-of-the-art relative SLAM system. Maps can also be augmented with virtual elements that are consistently shared by all the clients. The visual-inertial mapping framework which underlies this system is discussed, along with the server architecture and novel integrated multi-session loop closure system. We show quantitative results of the system. The map fusion benefits are demonstrated with an example augmented reality application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Trans. Robot. 28(4), 840–854 (2012)
ARPG. Node. https://github.com/arpg/Node
Bryson, M., Sukkarieh, S.: Architectures for cooperative airborne simultaneous localisation and mapping. J. Intell. Robot. Syst. 55(4–5), 267–297 (2009)
Castle, R.O., Klein, G., Murray, D.W.: Wide-area augmented reality using camera tracking and mapping in multiple regions. Comput. Vision Image Underst. 115(6), 854–867 (2011)
Chang, H.J., Lee, C.S.G., Hu, Y.C., Yung-Hsiang, Lu.: Multi-robot SLAM with topological/metric maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1467–1472 (2007)
Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Robot. 24(5), 932–945 (2008)
Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular SLAM with multiple micro aerial vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3962–3970. IEEE (2013)
Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)
Keivan, N., Patron-Perez, A., Sibley, G.: Adaptive asynchronous conditioning for visual-inertial SLAM. In: International Symposium on Experimental Robotics, June 2014
Klein, G., Murray, D,: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)
Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph SLAM. Int. J. Robot. Res. 32(14), 1611–1626 (2013)
Leung, K.Y.K., Barfoot, T.D., Liu, H.H.T.: Distributed and decentralized cooperative simultaneous localization and mapping for dynamic and sparse robot networks. In: IEEE International Conference onRobotics and Automatio, pp. 3841–3847, May 2011
McDonald, J., Kaess, M., Cadena, C., Neira, J., Leonard, J.J.: Real-time 6-DOF multi-session visual SLAM over large-scale environments. Robot. Auton. Syst. 61(10), 1144–1158 (2013)
Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: RSLAM: a system for large-scale mapping in constant-time using stereo. Int. J. Comput. Vision 94(2), 198–214 (2011)
Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. Int. J. Robot. Res. 32(7), 826–840 (2013)
Ergin Özkucur, N., Levent Akin, H.: Cooperative multi-robot map merging using fast-SLAM. In: RoboCup 2009: Robot Soccer World Cup XIII, number 5949 in Lecture Notes in Computer Science, pp. 449–460, Jan 2010
Riazuelo, L., Civera, J., Montiel, J.M.M.: C2TAM: a cloud framework for cooperative tracking and mapping. Robot. Auton. Syst. 62(4), 401–413 (2014)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European Conference on Computer Vision, pp. 430–443 (2006)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: IEEE Computer Vision and Pattern Recognition, June 2013
Sharma, R., Taylor, C., Casbeer, D.W., Beard, R.W.: Distributed cooperative slam using an information consenseus filter. In: AIAA Guidance Navigation and Control Conference, pp. 8334–8342 (2010)
Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D., Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: Roboearth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)
Acknowledgments
This work is made possible with generous support from Google Project Tango.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Japan
About this paper
Cite this paper
Morrison, J.G., Gálvez-López, D., Sibley, G. (2016). MOARSLAM: Multiple Operator Augmented RSLAM. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_9
Download citation
DOI: https://doi.org/10.1007/978-4-431-55879-8_9
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55877-4
Online ISBN: 978-4-431-55879-8
eBook Packages: EngineeringEngineering (R0)