Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Survey of Multi-index Transportation Problems and Its Variants with Crisp and Fuzzy Parameters

  • Conference paper
  • First Online:
Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 130))

Abstract

The Multi-index transportation problems are of immense use in present scenario. This paper provides a survey of the work done in the area of such problems from 1955 till date. The purpose of this survey is to provide the reader an up to date account of such problems and their current variants, many of which consider the fuzziness in objective function, constraints and/or coefficients. The survey also studies current approaches to solve such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anu, A., Arora, S.R.: Multi-Index fixed charge bicriterion transportation problem. Indian J. Pure Appl. Math. 32(5), 739–746 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Alves, I.C., Yamakami, A., Gomide, F.: An approach for fuzzy linear multicommodity transportation problems and its application. In: Proceedings of 1995 International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, Fuzzy Systems, vol. 2, pp. 773–780 (1995)

    Google Scholar 

  3. Bodkhe, S.G., Bajaj, V.H., Dhaigude, D.B.: Fuzzy programming technique to solve multi-objective solid transportation problem with some non-linear membership functions. Advances in Computational Research 2(1), 15–20 (2010)

    Google Scholar 

  4. Aysun, B.S., Hamza, B.: An axial four-index transportation problem and its algebraic characterizations. International Journal of Computer Mathematics 81(6), 765–773 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cadenas, J.M., Jiménez, F.: A genetic algorithm for the multiobjective solid transportation problem: a fuzzy approach. In: International Symposium on Automotive Technology and Automation, Proceedings for the Dedicated Conferences on Mechatronics and Supercomputing Applications in the Transportation Industries, Aachen, Germany, pp. 327–334 (1994)

    Google Scholar 

  6. Chanas, S., Delgado, M., Verdegay, J.L., Vila, M.A.: Interval and fuzzy extensions of classical transportation problems. Transportation Planning and Technology 17, 203–218 (1993)

    Article  Google Scholar 

  7. Galler, B., Dwyer, P.S.: Translating the method of reduced matrices to machines. Naval Res. Logistics Q 4, 55–71 (1957)

    Article  MathSciNet  Google Scholar 

  8. Gen, M., Ida, K., Li, Y.: Solving bicriteria solid transportation problem by genetic algorithm, Humans, Information and Technology. Systems, Man and Cybernetics 2, 1200–1207 (1994)

    Google Scholar 

  9. Haley, K.B.: The Solid transportation problem. Op. Res. 10, 448–463 (1962)

    Article  MATH  Google Scholar 

  10. Haley, K.B.: The multi-index problem. Op. Res. 11, 368–379 (1963)

    Article  MATH  Google Scholar 

  11. Hammer, P.L.: Time minimization transportation problem. Naval Research Logistics Quarterly 16, 345–357 (1969)

    MathSciNet  MATH  Google Scholar 

  12. Jimenez, F., Verdegay, J.L.: Interval multiobjective solid transportation problem via genetic algorithm. In: Proc. of the Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems, vol. 2, pp. 787–792 (1996)

    Google Scholar 

  13. Jimenez, F., Verdegay, J.L.: Obtaining fuzzy solutions to the fuzzy solid transportation problem with genetic algorithms. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1657–1663 (1997)

    Google Scholar 

  14. Korsnikov, A.D.: Planar three index transportation problems with dominating index. Mathematical Methods of Operations Research 32(1), 29–33 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Li, Y., Ida, K., Gen, M.: Evolution Program for multicriteria solid transportation problem with fuzzy numbers. Proc. of IEEE International Conference on Systems, Man and Cybernetics 3, 1960–1965 (1995)

    Google Scholar 

  16. Li, Y., Ida, K., Gen, M., Kobuchi, R.: Neural Network approach for multicriteria solid transportation problem. Computers & Industrial Engineering 33(3-4), 465–468 (1997)

    Article  Google Scholar 

  17. Liu, L., Lin, L.: Fuzzy fixed charge solid transportation problem and its algorithm. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 585–589 (2007)

    Google Scholar 

  18. Schell, E.D.: Distribution of a product of several properties. In: Proc. 2nd Simposium in Linear Programming, pp. 615–642. DCS/ controller, H.Q. U.S. Air Force Washington, D.C (1955)

    Google Scholar 

  19. Tzeng, G.H., Teodorovic, D., Hwang, M.J.: Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower. European Journal of Operational Research 95, 62–72 (1996)

    Article  MATH  Google Scholar 

  20. Vignaux, G.A., Michalewicz, Z.: A genetic algorithm for the linear transportation problem. Systems, Man and Cybernetics 21(2), 445–452 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zitouni, R., Keraghel, A.: Resolution of a capacitated transportation problem with four subscripts. Kybernetes 32(9/10), 1450–1463 (2003)

    Article  MATH  Google Scholar 

  22. Zitouni, R., Keraghel, A., Benterki, D.: Elaboration and Implantation of an Algorithm Solving a Capacitated Four-Index Transportation Problem. Applied Mathematical Sciences 53(1), 2643–2657 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India Pvt. Ltd.

About this paper

Cite this paper

Kumar, A., Yadav, S.P. (2012). A Survey of Multi-index Transportation Problems and Its Variants with Crisp and Fuzzy Parameters. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011. Advances in Intelligent and Soft Computing, vol 130. Springer, India. https://doi.org/10.1007/978-81-322-0487-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0487-9_86

  • Published:

  • Publisher Name: Springer, India

  • Print ISBN: 978-81-322-0486-2

  • Online ISBN: 978-81-322-0487-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics