Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crop Identification by Fuzzy C-Mean in Ravi Season Using Multi-Spectral Temporal Images

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 259))

  • 1541 Accesses

Abstract

Information regarding spatial distribution of different crops in a region of multi-cropping system is required for management and planning. In the present study, multi dated LISS-III and AWiFS data were used for crop identification. The cultivable land area extracted from the landuse classification of LISS-III image was used to generate spectral-temporal profile of crops according to their growth stages with Normalised Difference Vegetation Index (NDVI) method. The reflectance from the crops on 9 different dates identified separate spectral behavior. This combined NDVI image was then classified by Fuzzy C-Mean (FCM) method again to get 5 crop types for around 12,000 km2 area on Narmada river basin of Madhya Pradesh. The accuracy assessment of the classification showed overall accuracy of 88 % and overall Kappa of 0.83. The crop identification was done for one entire Ravi season from 23 October 2011 to 10 March 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wardlow, B., Egbert, S., Kastens, J.: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Rem. Sens. Environ. 108, 290–310 (2007)

    Google Scholar 

  2. Masialeti, I., Egbert, S., Wardlow, B.D.: A comparative analysis of phonological curves for major crops in Kansas. GIScience Remote Sens. 47(2), 241–259 (2010)

    Article  Google Scholar 

  3. Vincent, S., Pierre, F.: Identifying main crop classes in an irrigated area using high resolution image time series. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS’03), pp. 252–254 (2003)

    Google Scholar 

  4. Foerster, S., Kaden, K., Foerster, M., Itzerott, S.: Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 89, 30–40 (2012)

    Article  Google Scholar 

  5. Odenweller, J.B., Johnson, K.: Crop identification using Landsat temporal spectral profiles. Rem. Sens. Environ. 14, 39–54 (1984)

    Article  Google Scholar 

  6. Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F.: A curve fitting procedure to derive inter-annual phonologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106, 137–145 (2007)

    Article  Google Scholar 

  7. Wardlow, B., Egbert, S.: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Rem. Sens. Environ. 112, 1096–1116 (2008)

    Google Scholar 

  8. Reed, B.R., White, M.A., Brown, J.F.: Remote sensing phenology. In: Schwartz, M.D. (ed.) Phenology: An Integrative Environmental Science, pp. 365–381. Kluwer Academic Publishers, New York (2003)

    Chapter  Google Scholar 

  9. Doriaswamy, P.C., Akhmedov, B., Stern, A.J.: Improved techniques for crop classification using MODIS imagery. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS’06), pp. 2084–2087 (2006)

    Google Scholar 

  10. Ying, L., Xiuwan, C., Hongwei, D., Lingkui, M.: An improved multi temporal masking classification method for winter wheat identification. In: International Conference on Audio Language and Image Processing (ICALIP’10), pp. 1648–1651 (2010)

    Google Scholar 

  11. Panigrahy, R.K., Ray, S.S., Panigrahy, S.: Study on utility of IRS-P6 SWIR band for crop discrimination and classification. J. Indian Soc. Remote Sens. 37(2), 325–333 (2009)

    Article  Google Scholar 

  12. Murthy, C.S., Raju, P.V., Badrinath, K.V.S.: Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks. Int. J. Rem. Sens. 24(23), 4871–4890 (2003)

    Article  Google Scholar 

  13. Van Niel, T.G., Mc Vicar, T.R.: Determining temporal windows for crop discrimination with remote sensing: a case study in South-Eastern Australia. Comput. Electron. Agric. 45, 91–108 (2004)

    Article  Google Scholar 

  14. Zurita-Milla, R., Gomez-Chova, L., Guanter, L., Clevers, J.G.P.W., Camps-Valls, G.: Multi temporal un-mixing of medium spatial resolution satellite images: a case study using MERIS images for land cover mapping. In: IEEE Transactions on Geoscience and Remote Sensing Symposium, pp. 1–10 (2011)

    Google Scholar 

  15. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  16. Wang, F.: Fuzzy supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. Symp. 28, 194–201 (1990)

    Article  Google Scholar 

  17. Dave, R.N.: Characterization of noise in clustering. Pattern Recogn. Lett. 12, 657–664 (1991)

    Article  Google Scholar 

  18. Liang, P., Chunyu, Y.: Study on mixed pixel classification method of remote sensing image based on fuzzy theory. In: IEEE Conference Urban Remote Sensing Joint Event, pp. 1–7 (2009)

    Google Scholar 

  19. Jackson, R.D., Huete, A.R.: Interpreting vegetation indices. Preventory Vet. Med. 11, 185–200 (1991)

    Article  Google Scholar 

  20. Xie, Y., Sha, Z., Yu, M.: Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1(1), 9–23 (2008)

    Article  Google Scholar 

  21. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote sensing and image interpretation. Wiley, New York (2008)

    Google Scholar 

  22. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Remote Sensing Centre (NRSC) for providing the AWiFS and LISS-III satellite images for the study area and to the UGC for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sananda Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Kundu, S., Khare, D., Mondal, A., Mishra, P.K. (2014). Crop Identification by Fuzzy C-Mean in Ravi Season Using Multi-Spectral Temporal Images. In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1768-8_35

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1767-1

  • Online ISBN: 978-81-322-1768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics