Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 380))

Abstract

Traffic congestion in cities is a major problem mainly in developing countries; to encounter this, many models of traffic system have been proposed by different scholars. Different ways have been proposed to make the traffic system smarter, reliable, and robust. This paper presents the various approaches made to enhance the traffic system across the globe. A comparative study has been made of different potential researches in which intelligent traffic system (ITS) emerges as an important application area. Important key points of each research are highlighted and judged on the basis of implementing them in developing countries like India. A model is also proposed which uses infrared proximity sensors and a centrally placed microcontroller and uses vehicular length along a length to implement intelligent traffic monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mariagrazia, D., Pia, F.M., Carlo, M.: Real time traffic signal control: application to coordinated intersections. In: IEEE International Conference, vol. 4, pp. 3288, 3295. 5–8 Oct 2003

    Google Scholar 

  2. Wenjie, C., Lifeng, C., Zhanglong, C., Shiliang, T.: A realtime dynamic traffic control system based on wireless sensor network, parallel processing, 2005. In: International Conference on ICPP Workshops, pp. 258–264. 14–17 June 2005, ISSN: 1530-2016, Print ISBN: 0-7695-2381-1

    Google Scholar 

  3. Queen, C.M., Albers, C.J., Forecasting traffic flows in road networks: a graphical dynamic model approach, 29 July 2008

    Google Scholar 

  4. VanDaniker M.: Visualizing real time and archived traffic incident data. In: Proceedings of the 10th IEEE International Conference on Information Reuse and Integration, pp. 206–211. IEEE Press Piscataway, ©2009, ISBN: 978-1-4244-4114-3

    Google Scholar 

  5. Sharma, A., Chaki, R., Bhattacharya, U.: Wireless sensor networks. In: 3rd International Conference on ICECT, Jan 2011. doi:10.1109/ICECTECH.2011.5941955

  6. Amine Kafi, M., Challal, Y., Djenouri, D., Bouabdallah, A., Khelladi, L., Badache, N.: A study of wireless sensor network architectures and projects for traffic light monitoring. In: International Conference on Ambient Systems, Networks and Technologies, pp. 543–552, 28 Aug 2012

    Google Scholar 

  7. Zhou, B., Cao, J., Zeng, X., Wu, H.: Adaptive traffic light control in wireless sensor network-based intelligent transportation MATLAB. In: Vehicular Technology Conference Fall, IEEE 72nd, pp. 1–5, 6 Sept 2010

    Google Scholar 

  8. Promila Sinhmar, A.: Intelligent traffic light and density control using ir sensors and microcontroller. Int. J. Adv. Technol. Eng. Res. 2(2), 30–35 (2012)

    Google Scholar 

  9. Hussian, R., Sharma, S., Sharma, V., Sharma, S.: WSN applications: automated intelligent traffic control system using sensors. Int. J. Soft Comput. Eng. 3(3), 77–81 (2013)

    Google Scholar 

  10. Srivastava, M.D., Prerna, Sachin, S., Sharma, S., Tyagi, U.: Smart traffic control system using PLC and SCADA. Int. J. Innov. Sci. Eng. Technol. 1(2), Dec 2012

    Google Scholar 

  11. Gambardella Luca M.: Ant colony optimization for ad-hoc networks. In: The first MICS workshop on routing for Mobile Ad-Hoc Networks, Zurich, 13 Feb 2003

    Google Scholar 

  12. Cyrille, B., Antoine, D., Sylvain, L., Damien, O.: Road traffic management based on ant system and regulation method (2006)

    Google Scholar 

  13. Ozkurt, C., Camci, F.: Automatic traffic density estimation and vehicle classification for traffic surveillance systems using neural network. Math. Comput. Appl. 14(3), 187–196 (2009)

    Google Scholar 

  14. Yongxiang, X., Traffic control and optimization in road networks, 4 Sept 2009

    Google Scholar 

  15. Kale, S.B., Dhok, G.P.: Design of intelligent ambulance and traffic control. Int. J. Comput. Electron. Res. 2(2) 2013

    Google Scholar 

  16. Yousef, K.M., Al-Karaki, J.N., Shatnawi, A.M.: Intelligent traffic light flow control system using wireless sensors networks (2010)

    Google Scholar 

  17. Malik, T., Yi, S., Hongchi, S.: Adaptive traffic light control with wireless sensor networks. In: Proceedings of IEEE Consumer Communications and Networking Conference, pp. 187–191, 2007/1

    Google Scholar 

  18. Blessy, A., Devi, Reeona: An automatic traffic light management using vehicle sensor and GSM model. Int. J. Sci. Eng. Res. 4(6), 2354–2358 (2013)

    Google Scholar 

  19. Shiuan-Wen, C., Chang-Biau, Y., Yung-Hsing, P.: Algorithms for the traffic light setting problem on the graph model (1996)

    Google Scholar 

  20. Dey, N., Samanta, S., Yang, X.-S., Chaudhri, S.S., Das, A.: Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search. Int. J. Bio-Inspired Comput. (IJBIC) 5(5), 315–326 (2013). (Impact Factor: 1.681) (Science Citation Index, Scopus)

    Article  Google Scholar 

  21. Day, N., Samanta, S., Chakraborty, S., Das, A., Chaudhuri, S.S. Suri, J.S.: Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging. J. Med. Imaging Health Inform. (Impact Factor: 0.623) (Science Citation Index Expanded (SciSearch), Scopus)

    Google Scholar 

  22. Samanta, S., Acharjee, S., Mukherjee, A., Das, D., Dey, D.: Ant Weight Lifting Algorithm for Image Segmentation, 2013 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC), Madurai, Dec 26–28 2013 [IEEE Xplore]

    Google Scholar 

  23. Samanta, S., Chakraborty, S., Acharjee, S., Mukherjee, A., Dey, N.: Solving 0/1 Knapsack Problem using Ant Weight Lifting Algorithm. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC), Madurai, Dec 26–28 2013 [IEEE Xplore]

    Google Scholar 

  24. Chakraborty, S., Pal, A.K., Dey, N., Das, D., Acharjee, S.: Foliage Area Computation using Monarch Butterfly Algorithm. In: 2014 International Conference on Non Conventional Energy (ICONCE 2014), JIS college of Engineering, Kalyani, January 16–17, 2014. [IEEE Xplore]

    Google Scholar 

  25. Dey, N., Chakraborty, S., Samanta, S.: Optimization of watermarking in biomedical signal. Lambert Publication, Heinrich-Böcking-Straße 6, 66121 Saarbrücken, ISBN-13: 978-3-659-46460-7

    Google Scholar 

  26. Chakraborty, S., Samanta, S., Mukherjee, A., Dey, N., Chaudhuri, S.S.: Particle Swarm Optimization Based Parameter Optimization Technique in Medical Information Hiding. In:  2013 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC), Madurai, Dec 26–28 2013 [IEEE Xplore]

    Google Scholar 

  27. Jagatheesan, K., Anand, B., Dey, N.:  Automatic Generation Control of Thermal-Thermal-Hydro power systems with PID controller using Ant Colony Optimization, International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), Vol 6, Issue 2

    Google Scholar 

  28. Azura Che Soh/Lai Guan Rhung: MATLAB simulation of fuzzy traffic controller for multilane isolated intersection. Int. J. Comput. Sci. Eng. 02(04), 924–933 (2010)

    Google Scholar 

  29. Emad, I., Kareem, A., Jantan, A.: An intelligent traffic light monitor system using an adaptive associative memory. Int. J. Inf. Process. Manag. 2, 2(2.4), 23–39 (2011)

    Google Scholar 

  30. Placzek, B.: Performance evaluation of road traffic control using a fuzzy cellular model. In: 6th International Conference on HAIS, Wroclaw, pp. 59–66. Proceedings, Part II, 23–25 May 2011

    Google Scholar 

  31. Dakhole, A.Y., Moon, M.P.: Design of intelligent traffic control system based on ARM. J. VLSI Signal Proc. 4(4), 37–40 (2014). Ver. I

    Google Scholar 

  32. Jaiswal, S., Agarwal, T., Singh, A., Lakshita, : Intelligent traffic control unit. Int. J. Electr. Electron. (ISSN NO. (Online): 27-2626 and Computer Engineering 2(2), 6–72 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Priya Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Biswas, S.P., Roy, P., Patra, N., Mukherjee, A., Dey, N. (2016). Intelligent Traffic Monitoring System. In: Satapathy, S., Raju, K., Mandal, J., Bhateja, V. (eds) Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol 380. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2523-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2523-2_52

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2522-5

  • Online ISBN: 978-81-322-2523-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics