Abstract
Recent research indicates that multimodal biometrics is the way forward for a highly reliable adoption of biometric identification systems in various applications, such as banks, businesses, government and even home environments. However, such systems would require large distributed datasets with multiple computational realms spanning organisational boundaries and individual privacies.
In this paper, we propose a novel approach and architecture for multimodal biometrics that leverages the emerging grid information services and harnesses the capabilities of neural network as well. We describe how such a neuro-grid architecture is modelled with the prime objective of overcoming the barriers of biometric risks and privacy issues through flexible and adaptable multimodal biometric fusion schemes. On one hand, the model uses grid services to promote and simplify the shared and distributed resource management of multimodal biometrics, and on the other hand, it adopts a feed-forward neural network to provide reliability and risk-based flexibility in feature extraction and multimodal fusion, that are warranted for different real-life applications. With individual autonomy, scalability, risk-based deployment and interoperability serving the backbone of the neuro-grid information service, our novel architecture would deliver seamless and robust access to geographically distributed biometric data centres that cater to the current and future diverse multimodal requirements of various day-to-day biometric transactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Condon, “New Biometrics See Right through You”, Information Security, Vol. 4, No. 1, pp. 24-26, 2007.
M. De Marsico, M. Nappi, D. Riccio, G. Tortora, “A Multiexpert Collaborative Biometric System for People Identification”, Journal of Visual Languages & Computing, Vol. 20, No. 2, pp. 91-100, 2009.
R. Ryan, “How to Successfully Design and Deploy Biometrics to Protect Identity and Overcome Privacy Concerns”, The Winter 2007 Biometrics Summit, Miami, Florida, 2007.
A. Jain, A. Ross and S. Prabhakar, “An Introduction to Biometric Recognition, IEEE Transactions on Circuits and Systems for Video Technology”, Special Issue on Image and Video-based Biometrics, Vol. 14, No. 1, pp. 4-20, 2004.
K. Chang, K. W. Bowyer, S. Sarkar and B. Victor, “Comparison and Combination of Ear and Face Images in Appearance-Based Biometrics”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 9, pp. 1160-1165, 2003.
A. Jain and A. Ross, “Multibiometric Systems”, Communications of the ACM, Vol. 47, No. 1, pp. 34-40, 2004.
International Biometric Group, “Biometrics Market and Industry Report 2007-2012”, Biometrics Report and Research, http://www.biometricgroup.com, 2007.
E. Camlikaya, A. Kholmatov, and B. Yanikoglu, “Multi-biometric Templates Using Fingerprint and Voice”, Proceedings of SPIE Conference on Biometric Technology for Human Identification, 2008.
A. Shoshani, A. Sim, and J. Gu, “Storage Resource Managers: Essential Components for the Grid”, In Grid Resource Management: State of the Art and Future Trends, J. Nabrzyski, J. Schopf, and J.Weglarz, Eds. New York: Kluwer, 2003.
S. Venkatraman, and S. Kulkarni, “The Impact of Biometric Systems on Communities: Perspectives and Challenges”, Proceedings of 11th Annual Australian Conference on Knowledge Management and Intelligent Decision Support - ACKMIDS08, 2008.
A. Teoh, S. Samad, and A. Hussain, “Nearest Neighbourhood Classifiers in a Bimodal Biometric Verification System Fusion Decision Scheme”, Journal of Research and Practice in Information Technology, Vol. 36, No. 1, pp. 47-62, 2004.
F. Roll, K. Josef, F. Giorgio, and M. Daniele, “An Experimental Comparison of Classifier Fusion Rules for Multimodal Personal Identity Verification Systems”, Proceedings of Third International Workshop, Cagliari, Italy, 2002.
Y. Wang, T. Tan, and A. Jain, “Combining Face and Iris Biometrics for Identity Verification”, Proceedings of Fourth International Conference on Audio and Video-based Biometric Person Authentication (AVBPA’03), Guiford, U.K., 2003.
A. Bromme, “A Risk Analysis Approach for Biometric Authentication Technology”, International Journal of Network Security, Vol. 2, No. 1, pp. 52-63, 2006.
R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, “Large Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, pp. 450-455, 2005.
M. Egmont-Petersen, D. De Ridder, H. Handels, “Image Processing with Neural Networks - a review”. Pattern Recognition Vol. 35, No. 10: 2279-2301, 2002.
B.B. Nasution and A.I. Khan, “A Hierarchical Graph Neuron Scheme for Real-Time Pattern Recognition”, IEEE Transactions on Neural Networks, Vol 19, No. 2, pp. 212-229, 2008.
B. Widrow, and R. Winter, “Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition”, IEEE Computer, Vol. 21, No. 3, pp. 25-39, 1988.
D. Mandic, & J. Chambers, Recurrent Neural Networks for Prediction: Architectures, Learning algorithms and Stability. Wiley, 2001.
S. Kulkarni, and B. Verma, “An Autoassociator for Automatic Texture Feature Extraction”, Proceedings of 4 th International Conference on Computational Intelligence and Multimedia Applications (ICCIMA ’01), pp. 328-332, Yokosuka, Japan, 2001.
M. Atkinson, A. Chervenak, P. Kunszt, I. Narang, N. Paton, D. Pearson, A. Shoshani, and P. Watson, “Data access, integration, and management”, In The Grid: Blueprint for a New Computing Infrastructure, 2nd Ed., I. Foster and C. Kesselman, Eds. Morgan Kaufmann, San Francisco, CA, 2004.
R.Butler, V. Welch, D. Engert, I. Foster, S.Tuecke, J. Volmer, and C. Kesselman, “A National-scale Authentication Infrastructure”, IEEE Computer, Vol. 33, No. 12, pp. 60-66, 2000.
K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid Information Services for Distributed Resource Sharing”, Proceedings of 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181-184. IEEE Press, New York 2001.
S.A. Mokhov, “Choosing Best Algorithm Combinations for Speech Processing Tasks in Machine Learning Using MARF”, Advances in Artificial Intelligence, In LNAI 5032, S. Bergler, Ed., pp. 216-221, Springer-Verlag, Berlin Heidelberg, 2008
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media B.V.
About this paper
Cite this paper
Venkataraman, S., Kulkarni, S. (2010). Risk-Based Neuro-Grid Architecture for Multimodal Biometrics. In: Sobh, T., Elleithy, K. (eds) Innovations in Computing Sciences and Software Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9112-3_9
Download citation
DOI: https://doi.org/10.1007/978-90-481-9112-3_9
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-9111-6
Online ISBN: 978-90-481-9112-3
eBook Packages: Computer ScienceComputer Science (R0)