Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FLIP-ECOC: A Greedy Optimization of the ECOC Matrix

  • Conference paper
  • First Online:
Computer and Information Sciences

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 62))

Abstract

Error Correcting Output Coding (ECOC) is a multiclass classification technique, in which multiple base classifiers (dichotomizers) are trained using subsets of the training data, determined by a preset code matrix. While it is one of the best solutions to multiclass problems, ECOC is suboptimal, as the code matrix and the base classifiers are not learned simultaneously. In this paper, we show an iterative update algorithm that reduces this decoupling. We compare the algorithm with the standard ECOC approach, using Neural Networks (NNs) as the base classifiers, and show that it improves the accuracy for some well-known data sets under different settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tumer K., Ghosh, J.: Error Correlation and Error Reduction in Ensemble Classifiers. Connection Science, Special Issue on Combining Artificial Neural Networks: Ensemble Approaches, 8(3) 385–404 (1996)

    Google Scholar 

  2. Escalera, S., Tax, D. M. J., Pujol, O., Radeva, P., Duin, R. P. W.: Subclass Problem-Dependent Design for Error-Correcting Output Codes. In: IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 6, pp. 1041–1054 (2008)

    Article  Google Scholar 

  3. Dietterich, T.G., Bakiri, G.: Solving Multi-class Learning Problems via Error- Correcting Output Codes. J. Artificial Intelligence Research 2. 263–286 (1995)

    MATH  Google Scholar 

  4. Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. JMLR 1. 113–141 (2002)

    Article  MathSciNet  Google Scholar 

  5. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html. School of Information and Computer Science, University of California, Irvine, CA (2007)

    Google Scholar 

  6. Escalera, S., Pujol, O., Radeva, P.: On the Decoding Process in Ternary Error- Correcting Output Codes. In: CIARP, vol. 4225, pp. 753–763 (2006)

    Google Scholar 

  7. Escalera, S., Pujol, O., Radeva, P.: Recoding Error-Correcting Output Codes. Proceedings of the 8th International Workshop on MCS, vol. 5519, pp. 11–21 (2009)

    Google Scholar 

  8. Alpaydin, E., Mayoraz, E.: Learning error-correcting output codes from data. In: Proc. Int. Conf. Neural Networks (ICANN) (1999)

    Google Scholar 

  9. James, G. M.: Majority Vote Classifiers: Theory and Applications. PhD Thesis, Department of Statistics, University of Standford (1998)

    Google Scholar 

  10. James, G. M., Hastie, T.: The Error Coding Method and PICT’s, Computational and Graphical Statistics, vol. 7, no. 3, pp. 377–387 (1998)

    Article  MathSciNet  Google Scholar 

  11. Windeatt, T., Ghaderi R.: Coding and Decoding Strategies for Multi-class Learning Problems. Information Fusion, 4(1), pp. 11–21 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemre Zor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Zor, C., Yanikoglu, B., Windeatt, T., Alpaydin, E. (2011). FLIP-ECOC: A Greedy Optimization of the ECOC Matrix. In: Gelenbe, E., Lent, R., Sakellari, G., Sacan, A., Toroslu, H., Yazici, A. (eds) Computer and Information Sciences. Lecture Notes in Electrical Engineering, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9794-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9794-1_30

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9793-4

  • Online ISBN: 978-90-481-9794-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics