Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Planning Singularity-Free Force-Feasible Paths on the Stewart Platform

  • Conference paper
Latest Advances in Robot Kinematics

Abstract

This paper provides a method for computing force-feasible paths on the Stewart platform. Given two configurations of the platform, the method attempts to connect them through a path that, at any point, allows the platform to counteract any external wrench lying inside a predefined six-dimensional region. In particular, the Jacobian matrix of the manipulator will be full rank along such path, so that the path will not traverse the forward singularity locus at any point. The path is computed by first characterizing the force-feasible C-space of the manipulator as the solution set of a system of equations, and then using a higher-dimensional continuation technique to explore this set systematically from one configuration, until the second configuration is found. Examples are included that demonstrate the performance of the method on illustrative situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya, S., Hatwal, H., Ghosh, A.: Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators. Mech. Mach. Theory 33(7), 965–974 (1998)

    Article  MATH  Google Scholar 

  2. Bohigas, O., Zlatanov, D., Ros, L., Manubens, M., Porta, J.: Numerical computation of manipulator singularities. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (2012)

    Google Scholar 

  3. Bosscher, P., Riechel, A., Ebert-Uphoff, I.: Wrench-feasible workspace generation for cable-driven robots. IEEE Trans. Robot. 22(5), 890–902 (2006)

    Article  Google Scholar 

  4. Cortés, J., Siméon, T.: Probabilistic motion planning for parallel mechanisms. In: Proc. of the IEEE Int. Conf. on Rob. and Aut., vol. 3, pp. 4354–4359 (2003)

    Chapter  Google Scholar 

  5. Dasgupta, B., Mruthyunjaya, T.: Singularity-free path planning for the Stewart platform manipulator. Mech. Mach. Theory 33(6), 711–725 (1998)

    Article  MathSciNet  Google Scholar 

  6. Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Workspace generation and planning singularity-free path for parallel manipulators. Mech. Mach. Theory 40(7), 776–805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Henderson, M.E.: Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifurc. Chaos 12(3), 451–476 (2002)

    Article  MATH  Google Scholar 

  8. Hubert, J.: Manipulateurs parallèles, singularités et analyse statique. Ph.D. thesis, École Nationale Supérieure des Mines de Paris (2010)

    Google Scholar 

  9. Li, H., Gosselin, C., Richard, M., St-Onge, B.: Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform. ASME J. Mech. Des. 128, 279–288 (2006)

    Article  Google Scholar 

  10. Merlet, J.: Parallel robots. Springer-Verlag (2006)

    MATH  Google Scholar 

  11. Merlet, J.P., Gosselin, C.: Parallel Mechanisms and Robots. In: Springer Handbook of Robotics, pp. 269–285. Springer (2008)

    Chapter  Google Scholar 

  12. Porta, J.M., Jaillet, L.: Path planning on manifolds using randomized higher-dimensional continuation. In: Hsu D., Isler V., Latombe J.C., Lin M. (eds.) Algorithmic Foundation of Robotics IX. STAR, vol. 68, pp. 337–353. Springer (2011)

    Chapter  Google Scholar 

  13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2003)

    Google Scholar 

  14. Sen, S., Dasgupta, B., Mallik, A.K.: Variational approach for singularity-free path-planning of parallel manipulators. Mech. Mach. Theory 38(11), 1165–1183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Voglewede, P., Ebert-Uphoff, I.: Overarching framework for measuring closeness to singularities of parallel manipulators. IEEE Trans. Robot. 21(6), 1037–1045 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish Government under contract DPI2010-18449, and by a Juan de la Cierva contract supporting the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Bohigas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bohigas, O., Manubens, M., Ros, L. (2012). Planning Singularity-Free Force-Feasible Paths on the Stewart Platform. In: Lenarcic, J., Husty, M. (eds) Latest Advances in Robot Kinematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4620-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4620-6_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4619-0

  • Online ISBN: 978-94-007-4620-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics