Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sea Ice Deformation

  • Chapter
  • First Online:
Drift, Deformation, and Fracture of Sea Ice

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

Instead of individual trajectories, this chapter consider velocity gradients within sea ice, i.e. deformation rates. This can be done either from the analysis of the relative dispersion of tracers (buoys), or from strain-rate fields obtained from satellite imagery. Although statistical tools previously developed in the context of turbulence have been used to characterize sea ice dispersion, the differences between sea ice and turbulent fluids are important. Sea ice deformation exhibits a strong spatial localization accompanied by a strong intermittency, both aspects being respectively characterized by specific space and time scaling laws. Moreover, they are coupled together through a space/time scaling symmetry that has no equivalence in fluid turbulence, but has been documented for the brittle deformation of the Earth’s crust. A consequence is that sea ice dispersion regimes vary from a slightly super-diffusive regime at small spatial scales, to a very slow sub-diffusive one at large scales, i.e. much slower than oceanic dispersion. This also argues for a strongly non-linear, brittle rheology of the sea ice cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 20, 887–897.

    Article  Google Scholar 

  • Batchelor, G. K. (1950). The application of the similarity theory of turbulence to atmospheric diffusion. Quarterly Journal of the Royal Meteeorological Society, 76, 133–146.

    Google Scholar 

  • Batchelor, G. K. (1952). Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proceedings of the Cambridge Philological Society, 48, 345–362.

    Article  Google Scholar 

  • Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J., & Bodenschatz, E. (2006). The role of pair dispersion in turbulent flow. Science, 311(5762), 835–838.

    Article  Google Scholar 

  • Coon, M., Kwok, R., Levy, G., Pruis, M., Schreyer, H., & Sulsky, D. (2007). Arctic ice dynamics joint experiment (AIDJEX) assumptions revisited and found inadequate. Journal of Geophysical Research, 112, C11S90.

    Google Scholar 

  • Gimbert, F. (2012). Mechanics of Arctic sea ice and granular materials: two media, two approaches. PhD Thesis, University of Grenoble, Grenoble.

    Google Scholar 

  • Girard, L., Amitrano, D, & Weiss, J. (2010). Fracture as a critical phenomenon in a progressive damage model. Journal of Statistical Mechanics, P01013.

    Google Scholar 

  • Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., & Legat, V. (2011). A new modelling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52(57), 123–132.

    Article  Google Scholar 

  • Girard, L., Weiss, J., Molines, J. M., Barnier, B., & Boullion, S. (2009). Evaluation of two sea ice models on the basis of statistical and scaling properties of Arctic sea ice deformation. Journal of Geophysical Research, 114, C08015.

    Article  Google Scholar 

  • Heil, P., Hutchings, J. K., Worby, A. P., Johansson, M., Launiainen, J., Haas, C., et al. (2008). Tidal forcing on sea-ice drift and deformation in the western Weddell Sea in early austral summer, 2004. Deep-Sea Research Part II, Topical Studies in Oceanography, 55(8–9), 943–962.

    Article  Google Scholar 

  • Herman, A. (2011). Molecular-dynamics simulation of clustering processes in sea-ice floes. Physical Review E, 84(5), 056104  .

    Article  Google Scholar 

  • Hibler, W. D. I. (1979). A dynamic thermodynamics sea ice model. Journal of Physical Oceanography, 9, 815–846.

    Article  Google Scholar 

  • Hopkins, M. A., Frankenstein, S., & Thorndike, A. S. (2004). Formation of an aggregate scale in Arctic sea ice. Journal of Geophysical Research, 109, C01032.

    Article  Google Scholar 

  • Hutchings, J. K., Heil, P., Steer, A., & Hibler, W. D. (2012). Subsynoptic scale spatial variability of sea ice deformation in the western Weddell Sea during early summer. Journal of Geophysical Research-Oceans, 117, C01002.

    Google Scholar 

  • Hutchings, J. K., Roberts, A., Geiger, C. A., & Richter-Menge, J. A. (2011). Spatial and temporal characterization of sea ice deformation. Annals of Glaciology, 52(57), 360–368.

    Article  Google Scholar 

  • Jaeger, J. C., & Cook, N. G. W. (1979). Fundamentals of rock mechanics. London: Chapman and Hall.

    Google Scholar 

  • Kwok, R. (1998). The RADARSAT geophysical processor system. In C. Tsatsoulis & R. Kwok (Eds.), Analysis of SAR data of the polar oceans (pp. 235–257). Springer-Verlag.

    Google Scholar 

  • Kwok, R. (2001). Deformation of the arctic ocean sea ice cover between November 1996 and April 1997: a survey, paper presented at IUTAM scaling laws in ice mechanics and ice dynamics. Fairbanks: Kluwer Academic Publishers.

    Google Scholar 

  • Kwok, R., Cunningham, G. F., & Hibler, W. D. I. (2003). Sub-daily sea ice motion and deformation from RADARSAT observations. Geophysical Research Letters, 30(23), L018723.

    Article  Google Scholar 

  • Kwok, R., Curlander, J. C., McConnell, R., & Pang, S. S. (1990). An ice-motion tracking system at the Alaska SAR facility. IEEE Journal of Oceanic Engineering, 15(1), 44–54.

    Article  Google Scholar 

  • LaCasce, J. H. (2008). Statistics from Lagrangian observations. Progress in Oceanography, 77(1), 1–29.

    Article  Google Scholar 

  • Lacorata, G., Aurell, E., Legras, B., & Vulpiani, A. (2004). Evidence for a k-5/3 spectrum from the EOLE Lagrangian balloons in the low stratosphere. Journal of Atmospheric Sciences, 61, 2936–2942.

    Article  Google Scholar 

  • Lindsay, R. W., & Stern, H. L. (2003). The RadarSat geophysical processor system: quality of sea ice trajectory and deformation estimates. Journal of Atmospheric and Oceanic Technology, 20, 1333–1347.

    Article  Google Scholar 

  • Mandelbrot, B., & Van Ness, J. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.

    Article  Google Scholar 

  • Marsan, D., & Bean, C. J. (2003). Multifractal modeling and analyses of crustal heterogeneity. In J. A. Goff & K. Holliger (Eds.), Heterogeneity in the Crust and Upper Mantle (pp. 207–236). Kluwer Academic Publishers.

    Google Scholar 

  • Marsan, D., Stern, H., Lindsay, R., & Weiss, J. (2004). Scale dependence and localization of the deformation of arctic sea ice. Physical Review Letters, 93(17), 178501.

    Article  Google Scholar 

  • Marsan, D., & Weiss, J. (2010). Space/time coupling in brittle deformation at geophysical scales. Earth and Planetary Science Letters, 296(3–4), 353–359.

    Article  Google Scholar 

  • Marsan, D., Weiss, J., Metaxian, J. P., Grangeon, J., Roux, P. F., & Haapala, J. (2011). Low-frequency bursts of horizontally polarized waves in the Arctic sea-ice cover. Journal of Glaciology, 57(202), 231–237.

    Article  Google Scholar 

  • Martin, S., & Thorndike, A. S. (1985). Dispersion of sea ice in the Bering Sea. Journal of Geophysical Research, 90(C4), 7223–7226.

    Google Scholar 

  • Monin, A. S., & Yaglom, A. M. (1975). Statistical fluid mechanics: Mechanics of Turbulence (p. 874). Cambridge: MIT Press.

    Google Scholar 

  • Morel, P., & Larchevèque, M. (1974). Relative dispersion of constant-level balloons in the 200-mb general circulation. Journal of Atmospheric Science, 31, 2189–2196.

    Article  Google Scholar 

  • Moritz, R. E., & Stern, H. L. (2001). Relationships between geostrophic winds, ice strain rates and the piecewise rigid motions of pack ice. In J. P. Dempsey & H. H. Shen (Eds.), Scaling laws in ice mechanics and ice dynamics (pp. 335–348). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nye, J. F. (1973). Is there any physical basis for assuming linear viscous behavior for sea ice. AIDJEX Bulletin, 21, 18–19.

    Google Scholar 

  • Nye, J. F. (1975). The use of ERTS photographs to measure the movement and deformation of sea ice. Journal of Glaciology, 15(73), 429–436.

    Google Scholar 

  • Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Research, 18, 789–802.

    Google Scholar 

  • Ollitrault, M., Gabillet, C., & De Verdiere, A. C. (2005). Open ocean regimes of relative dispersion. Journal of Fluid Mechanics, 533, 381–407.

    Article  Google Scholar 

  • Overland, J. E., Walter, B. A., Curtin, T. B., & Turet, P. (1995). Hierarchy and sea ice mechanics: A case study from the Beaufort Sea. Journal of Geophysical Research, 100(C3), 4559–4571.

    Google Scholar 

  • Pasquill, F. (1974). Atmospheric diffusion (2nd ed.). New York: Wiley.

    Google Scholar 

  • Pavlov, V., Pavlova, O., & Korsnes, R. (2004). Sea ice fluxes and drift trajectories from potential pollution sources, computed with a statistical sea ice model of the Arctic Ocean. Journal of Marine Systems, 48(1–4), 133–157.

    Article  Google Scholar 

  • Pfirman, S. L., Kogeler, J. W., & Rigor, I. (1997). Potential for rapid transport of contaminants from the Kara Sea. Science of the Total Environment, 202(1–3), 111–122.

    Article  Google Scholar 

  • Radjai, F., Jean, M., Moreau, J. J., & Roux, S. (1996). Force distributions in dense two-dimensional granular systems. Physical Review Letters, 77(2), 274–277.

    Article  Google Scholar 

  • Rampal, P., Weiss, J., Marsan, D., Lindsay, R., & Stern, H. (2008). Scaling properties of sea ice deformation from buoy dispersion analyses. Journal of Geophysical Research, 113, C03002.

    Article  Google Scholar 

  • Richardson, L. F. (1926). Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London A, 110, 709–737.

    Article  Google Scholar 

  • Richardson, L. F., & Stommel, H. (1948). Note on eddy diffusion in the sea. Journal of Meteorology, 5, 238–240.

    Article  Google Scholar 

  • Sawford, B. (2001). Turbulent relative dispersion. Annual Review of Fluid Mechanics, 33, 289–317.

    Article  Google Scholar 

  • Schmittbuhl, J., Schmitt, F., & Scholz, C. (1995). Scaling invariance of crack surfaces. Journal of Geophysical Research, 100, 5953–5973.

    Article  Google Scholar 

  • Schulson, E. M. (1990). The brittle compressive fracture of ice. Acta Metallurgica et Materialia, 38(10), 1963–1976.

    Article  Google Scholar 

  • Schulson, E. M. (2001). Brittle failure of ice. Engineering Fracture Mechanics, 68(17–18), 1839–1887.

    Article  Google Scholar 

  • Schulson, E. M. (2004). Compressive shear faults within the arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 109, C07016, C002108.

    Google Scholar 

  • Schulson, E. M., & Duval, P. (2009). Creep and fracture of ice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sornette, D. (2000). Critical phenomena in natural sciences. Berlin: Springer.

    Google Scholar 

  • Stern, H. L., & Lindsay, R. W. (2009). Spatial scaling of Arctic sea ice deformation. Journal of Geophysical Research, 114, C10017.

    Article  Google Scholar 

  • Stern, H. L., Rothrock, D. A., & Kwok, R. (1995). Open water production in Arctic sea ice: Satellite measurements and model parametrizations. Journal of Geophysical Research, 100(C10), 20601–20612.

    Google Scholar 

  • Taboada, A., Chang, K. J., Radjai, F. & Bouchette, F. (2005). Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical tests using the contact dynamics method. Journal of Geophysical Research-Solid Earth, 110(B9).

    Google Scholar 

  • Thomas, M., Geiger, C. A., & Kambhamettu, C. (2008). High resolution (400 m) motion characterization of sea ice using ERS-1 SAR imagery. Cold Regions Science and Technology, 52, 207–223.

    Article  Google Scholar 

  • Thorndike, A. S. (1986). Kinematics of sea ice. In N. Untersteiner (Ed.), The geophysics of sea ice (pp. 489–549). New York: Plenum Press.

    Google Scholar 

  • Thorndike, A. S., & Colony, R. (1982). Sea ice motion in response to geostrophic winds. Journal of Geophysical Research, 87(C8), 5845-5852.

    Google Scholar 

  • Thorndike, A. S., Rothrock, D. A., Maykut, G. A., & Colony, R. (1975). The thickness distribution of sea ice. Journal of Geophysical Research, 80(33), 4501–4513.

    Article  Google Scholar 

  • Uttal, T., et al. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83(2), 255–275.

    Article  Google Scholar 

  • Weiss, J. (2003). Scaling of fracture and faulting in ice on Earth. Surveys of Geophysics, 24, 185–227.

    Article  Google Scholar 

  • Weiss, J., & Marsan, D. (2004). Scale properties of sea ice deformation and fracturing. Comptes Rendus Physique, 5(7), 683–685.

    Google Scholar 

  • Weiss, J., & Schulson, E. M. (2009). Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice. Journal of Physics. D. Applied Physics, 42, 214017.

    Article  Google Scholar 

  • Weiss, J., Schulson, E. M., & Stern, H. L. (2007). Sea ice rheology from in situ, satellite and laboratory observations: Fracture and friction. Earth and Planetary Science Letters, 255, 1–8.

    Article  Google Scholar 

  • Wilchinsky, A. V., Feltham, D. L., & Hopkins, M. A. (2010). Effect of shear rupture on aggregate scale formation in sea ice. Journal of Geophysical Research-Oceans, 115.

    Google Scholar 

  • Yaglom, A. M. (1966). The Influence of Fluctuations in Energy Dissipation in the Shape of Turbulence Characteristics in the Inertial Interval. Soviet Physics. Doklady, 2, 26–30.

    Google Scholar 

  • Zhang, H. M., Prater, M. D., & Rossby, T. (2001). Isopycnal lagrangian statistics from the North Atlantic current RAFOS float observations. Journal of Geophysical Research, 106(C7), 13817–13836.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Weiss .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Weiss, J. (2013). Sea Ice Deformation. In: Drift, Deformation, and Fracture of Sea Ice. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6202-2_3

Download citation

Publish with us

Policies and ethics