Abstract
Instead of individual trajectories, this chapter consider velocity gradients within sea ice, i.e. deformation rates. This can be done either from the analysis of the relative dispersion of tracers (buoys), or from strain-rate fields obtained from satellite imagery. Although statistical tools previously developed in the context of turbulence have been used to characterize sea ice dispersion, the differences between sea ice and turbulent fluids are important. Sea ice deformation exhibits a strong spatial localization accompanied by a strong intermittency, both aspects being respectively characterized by specific space and time scaling laws. Moreover, they are coupled together through a space/time scaling symmetry that has no equivalence in fluid turbulence, but has been documented for the brittle deformation of the Earth’s crust. A consequence is that sea ice dispersion regimes vary from a slightly super-diffusive regime at small spatial scales, to a very slow sub-diffusive one at large scales, i.e. much slower than oceanic dispersion. This also argues for a strongly non-linear, brittle rheology of the sea ice cover.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashby, M. F. (1972). A first report on deformation-mechanism maps. Acta Metallurgica, 20, 887–897.
Batchelor, G. K. (1950). The application of the similarity theory of turbulence to atmospheric diffusion. Quarterly Journal of the Royal Meteeorological Society, 76, 133–146.
Batchelor, G. K. (1952). Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proceedings of the Cambridge Philological Society, 48, 345–362.
Bourgoin, M., Ouellette, N. T., Xu, H. T., Berg, J., & Bodenschatz, E. (2006). The role of pair dispersion in turbulent flow. Science, 311(5762), 835–838.
Coon, M., Kwok, R., Levy, G., Pruis, M., Schreyer, H., & Sulsky, D. (2007). Arctic ice dynamics joint experiment (AIDJEX) assumptions revisited and found inadequate. Journal of Geophysical Research, 112, C11S90.
Gimbert, F. (2012). Mechanics of Arctic sea ice and granular materials: two media, two approaches. PhD Thesis, University of Grenoble, Grenoble.
Girard, L., Amitrano, D, & Weiss, J. (2010). Fracture as a critical phenomenon in a progressive damage model. Journal of Statistical Mechanics, P01013.
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., & Legat, V. (2011). A new modelling framework for sea-ice mechanics based on elasto-brittle rheology. Annals of Glaciology, 52(57), 123–132.
Girard, L., Weiss, J., Molines, J. M., Barnier, B., & Boullion, S. (2009). Evaluation of two sea ice models on the basis of statistical and scaling properties of Arctic sea ice deformation. Journal of Geophysical Research, 114, C08015.
Heil, P., Hutchings, J. K., Worby, A. P., Johansson, M., Launiainen, J., Haas, C., et al. (2008). Tidal forcing on sea-ice drift and deformation in the western Weddell Sea in early austral summer, 2004. Deep-Sea Research Part II, Topical Studies in Oceanography, 55(8–9), 943–962.
Herman, A. (2011). Molecular-dynamics simulation of clustering processes in sea-ice floes. Physical Review E, 84(5), 056104 .
Hibler, W. D. I. (1979). A dynamic thermodynamics sea ice model. Journal of Physical Oceanography, 9, 815–846.
Hopkins, M. A., Frankenstein, S., & Thorndike, A. S. (2004). Formation of an aggregate scale in Arctic sea ice. Journal of Geophysical Research, 109, C01032.
Hutchings, J. K., Heil, P., Steer, A., & Hibler, W. D. (2012). Subsynoptic scale spatial variability of sea ice deformation in the western Weddell Sea during early summer. Journal of Geophysical Research-Oceans, 117, C01002.
Hutchings, J. K., Roberts, A., Geiger, C. A., & Richter-Menge, J. A. (2011). Spatial and temporal characterization of sea ice deformation. Annals of Glaciology, 52(57), 360–368.
Jaeger, J. C., & Cook, N. G. W. (1979). Fundamentals of rock mechanics. London: Chapman and Hall.
Kwok, R. (1998). The RADARSAT geophysical processor system. In C. Tsatsoulis & R. Kwok (Eds.), Analysis of SAR data of the polar oceans (pp. 235–257). Springer-Verlag.
Kwok, R. (2001). Deformation of the arctic ocean sea ice cover between November 1996 and April 1997: a survey, paper presented at IUTAM scaling laws in ice mechanics and ice dynamics. Fairbanks: Kluwer Academic Publishers.
Kwok, R., Cunningham, G. F., & Hibler, W. D. I. (2003). Sub-daily sea ice motion and deformation from RADARSAT observations. Geophysical Research Letters, 30(23), L018723.
Kwok, R., Curlander, J. C., McConnell, R., & Pang, S. S. (1990). An ice-motion tracking system at the Alaska SAR facility. IEEE Journal of Oceanic Engineering, 15(1), 44–54.
LaCasce, J. H. (2008). Statistics from Lagrangian observations. Progress in Oceanography, 77(1), 1–29.
Lacorata, G., Aurell, E., Legras, B., & Vulpiani, A. (2004). Evidence for a k-5/3 spectrum from the EOLE Lagrangian balloons in the low stratosphere. Journal of Atmospheric Sciences, 61, 2936–2942.
Lindsay, R. W., & Stern, H. L. (2003). The RadarSat geophysical processor system: quality of sea ice trajectory and deformation estimates. Journal of Atmospheric and Oceanic Technology, 20, 1333–1347.
Mandelbrot, B., & Van Ness, J. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.
Marsan, D., & Bean, C. J. (2003). Multifractal modeling and analyses of crustal heterogeneity. In J. A. Goff & K. Holliger (Eds.), Heterogeneity in the Crust and Upper Mantle (pp. 207–236). Kluwer Academic Publishers.
Marsan, D., Stern, H., Lindsay, R., & Weiss, J. (2004). Scale dependence and localization of the deformation of arctic sea ice. Physical Review Letters, 93(17), 178501.
Marsan, D., & Weiss, J. (2010). Space/time coupling in brittle deformation at geophysical scales. Earth and Planetary Science Letters, 296(3–4), 353–359.
Marsan, D., Weiss, J., Metaxian, J. P., Grangeon, J., Roux, P. F., & Haapala, J. (2011). Low-frequency bursts of horizontally polarized waves in the Arctic sea-ice cover. Journal of Glaciology, 57(202), 231–237.
Martin, S., & Thorndike, A. S. (1985). Dispersion of sea ice in the Bering Sea. Journal of Geophysical Research, 90(C4), 7223–7226.
Monin, A. S., & Yaglom, A. M. (1975). Statistical fluid mechanics: Mechanics of Turbulence (p. 874). Cambridge: MIT Press.
Morel, P., & Larchevèque, M. (1974). Relative dispersion of constant-level balloons in the 200-mb general circulation. Journal of Atmospheric Science, 31, 2189–2196.
Moritz, R. E., & Stern, H. L. (2001). Relationships between geostrophic winds, ice strain rates and the piecewise rigid motions of pack ice. In J. P. Dempsey & H. H. Shen (Eds.), Scaling laws in ice mechanics and ice dynamics (pp. 335–348). Dordrecht: Kluwer Academic Publishers.
Nye, J. F. (1973). Is there any physical basis for assuming linear viscous behavior for sea ice. AIDJEX Bulletin, 21, 18–19.
Nye, J. F. (1975). The use of ERTS photographs to measure the movement and deformation of sea ice. Journal of Glaciology, 15(73), 429–436.
Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Research, 18, 789–802.
Ollitrault, M., Gabillet, C., & De Verdiere, A. C. (2005). Open ocean regimes of relative dispersion. Journal of Fluid Mechanics, 533, 381–407.
Overland, J. E., Walter, B. A., Curtin, T. B., & Turet, P. (1995). Hierarchy and sea ice mechanics: A case study from the Beaufort Sea. Journal of Geophysical Research, 100(C3), 4559–4571.
Pasquill, F. (1974). Atmospheric diffusion (2nd ed.). New York: Wiley.
Pavlov, V., Pavlova, O., & Korsnes, R. (2004). Sea ice fluxes and drift trajectories from potential pollution sources, computed with a statistical sea ice model of the Arctic Ocean. Journal of Marine Systems, 48(1–4), 133–157.
Pfirman, S. L., Kogeler, J. W., & Rigor, I. (1997). Potential for rapid transport of contaminants from the Kara Sea. Science of the Total Environment, 202(1–3), 111–122.
Radjai, F., Jean, M., Moreau, J. J., & Roux, S. (1996). Force distributions in dense two-dimensional granular systems. Physical Review Letters, 77(2), 274–277.
Rampal, P., Weiss, J., Marsan, D., Lindsay, R., & Stern, H. (2008). Scaling properties of sea ice deformation from buoy dispersion analyses. Journal of Geophysical Research, 113, C03002.
Richardson, L. F. (1926). Atmospheric diffusion shown on a distance-neighbour graph. Proceedings of the Royal Society of London A, 110, 709–737.
Richardson, L. F., & Stommel, H. (1948). Note on eddy diffusion in the sea. Journal of Meteorology, 5, 238–240.
Sawford, B. (2001). Turbulent relative dispersion. Annual Review of Fluid Mechanics, 33, 289–317.
Schmittbuhl, J., Schmitt, F., & Scholz, C. (1995). Scaling invariance of crack surfaces. Journal of Geophysical Research, 100, 5953–5973.
Schulson, E. M. (1990). The brittle compressive fracture of ice. Acta Metallurgica et Materialia, 38(10), 1963–1976.
Schulson, E. M. (2001). Brittle failure of ice. Engineering Fracture Mechanics, 68(17–18), 1839–1887.
Schulson, E. M. (2004). Compressive shear faults within the arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 109, C07016, C002108.
Schulson, E. M., & Duval, P. (2009). Creep and fracture of ice. Cambridge: Cambridge University Press.
Sornette, D. (2000). Critical phenomena in natural sciences. Berlin: Springer.
Stern, H. L., & Lindsay, R. W. (2009). Spatial scaling of Arctic sea ice deformation. Journal of Geophysical Research, 114, C10017.
Stern, H. L., Rothrock, D. A., & Kwok, R. (1995). Open water production in Arctic sea ice: Satellite measurements and model parametrizations. Journal of Geophysical Research, 100(C10), 20601–20612.
Taboada, A., Chang, K. J., Radjai, F. & Bouchette, F. (2005). Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical tests using the contact dynamics method. Journal of Geophysical Research-Solid Earth, 110(B9).
Thomas, M., Geiger, C. A., & Kambhamettu, C. (2008). High resolution (400 m) motion characterization of sea ice using ERS-1 SAR imagery. Cold Regions Science and Technology, 52, 207–223.
Thorndike, A. S. (1986). Kinematics of sea ice. In N. Untersteiner (Ed.), The geophysics of sea ice (pp. 489–549). New York: Plenum Press.
Thorndike, A. S., & Colony, R. (1982). Sea ice motion in response to geostrophic winds. Journal of Geophysical Research, 87(C8), 5845-5852.
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., & Colony, R. (1975). The thickness distribution of sea ice. Journal of Geophysical Research, 80(33), 4501–4513.
Uttal, T., et al. (2002). Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society, 83(2), 255–275.
Weiss, J. (2003). Scaling of fracture and faulting in ice on Earth. Surveys of Geophysics, 24, 185–227.
Weiss, J., & Marsan, D. (2004). Scale properties of sea ice deformation and fracturing. Comptes Rendus Physique, 5(7), 683–685.
Weiss, J., & Schulson, E. M. (2009). Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice. Journal of Physics. D. Applied Physics, 42, 214017.
Weiss, J., Schulson, E. M., & Stern, H. L. (2007). Sea ice rheology from in situ, satellite and laboratory observations: Fracture and friction. Earth and Planetary Science Letters, 255, 1–8.
Wilchinsky, A. V., Feltham, D. L., & Hopkins, M. A. (2010). Effect of shear rupture on aggregate scale formation in sea ice. Journal of Geophysical Research-Oceans, 115.
Yaglom, A. M. (1966). The Influence of Fluctuations in Energy Dissipation in the Shape of Turbulence Characteristics in the Inertial Interval. Soviet Physics. Doklady, 2, 26–30.
Zhang, H. M., Prater, M. D., & Rossby, T. (2001). Isopycnal lagrangian statistics from the North Atlantic current RAFOS float observations. Journal of Geophysical Research, 106(C7), 13817–13836.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2013 The Author(s)
About this chapter
Cite this chapter
Weiss, J. (2013). Sea Ice Deformation. In: Drift, Deformation, and Fracture of Sea Ice. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6202-2_3
Download citation
DOI: https://doi.org/10.1007/978-94-007-6202-2_3
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6201-5
Online ISBN: 978-94-007-6202-2
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)