Abstract
If one considers free algebras as semigroups of composition of terms or more specifically as clones of terms, the identities of these semigroups (respectively clones) can be interpreted as hyperidentities. Hyperidentities contain hypervariables which stand for terms, and describe the manipulation of these terms. We present a logic for hyperidentities and more generally for hybrid identities, a completeness theorem and deal with solid varieties. Separating hyperidentities for various semigroups and clones are presented next. The congruences of free algebras and of the clones of terms are described. Furthermore, many open questions and problems are included.
Dla Magdy, Dagusi i Krzysia
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aczél, J., Proof of a theorem of distributive type hyperidentities, Algebra Universalis 1 (1971), 1–6.
Asser, G., Einführung in die mathematische Logik I-III, Teubner, Leipzig (1981).
Baker, K.A., Pixley, A.F., Polynomial interpolation and the chinese remainder theorem for algebraic systems, Math. Z. 143 (1975), 165–174.
Belousov, V.D., Systems of quasigroups with generalized identities, Uspekhi Mat. Nauk. 20 (1965), 75–146 (Translation: Russian Math. Surveys 20 75–143 ).
Bergman, G.M., Hyperidentities of groups and semigroups, Aequationes Math. 23 (1981), 50–65.
Berman, J.,Free spectra of 3-element algebras, Preprint, University of Illinois at Chicago, p. 42.
Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433–454.
Chang, C.C., Keisler, H.J., Model Theory, North-Holland, Amsterdam (1973).
Clark, D.M., Krauss, P.H., Plain para primal algebras, Algebra Universalis 11 (1980), 365–388.
Clocksin, W.F., Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin, Heidelberg, New York (1981).
Csâkâny, B., All minimal clones on the three element set, Acta Cybernet. 6 (1983), 227–238.
Dudek, J., Graczynska E., The lattice of varieties of algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 337–349.
Davey, B.A., Priestley, H.A., Introduction to Lattices and Order, Cambridge University Press, Cambridge (1990).
Denecke, K., Boolean clones and hyperidentities in universal algebras, in: Universal and Applied Algebra ( K. Halkowska, B. Stawski, eds.), World Scientific Publishing Co., Singapore (1989), 23–45.
Denecke, K., Lau, D., Pöschel, R., Schweigert, D., Hyperidentities, hyperequational classes and clone congruences, in: Contributions to General Algebra, Vol. 7, Teubner, Wien (1991), 97–118.
Denecke, K., Malcev, I.A., Reschke, M., Separation of Boolean clones by hyperidentities, Preprint 1990.
Denecke, K., Pöschel, R., A characterization of Sheffer functions by hyperidentities, Semigroup Forum 37 (1988), 351–362.
Denecke, K., Pöschel, R., The characterization of primal algebras by hyperidentities, in: Contributions to General Algebra, Vol. 6, Teubner, Stuttgart (1988).
Denecke, K., Reichel, M., Funktionalgleichungen in zweiwertigen Logiken, Wiss. Z. Pädag. Hochsch. Potsdam 32 (1988), 603–606.
Enderton, H.B., Mathematical Introduction to Logic, Academic Press, New York (1972).
Evans, T., Some remarks on the general theory of clones, in: Finite Algebra and Multiple-Valued Logic (B. Csakany, I.G. Rosenberg, eds.), Colloq. Math. Soc. Janos Bolyai 28 (1979), 203–244.
Felscher, W., Equational maps, in: Contributions to Mathematical Logic ( H.A. Schmidt et al., eds.), North-Holland, Amsterdam (1968), 121–161.
Freese, R., McKenzie, R., Commutator Theory for Congruence Modular Varieties, Cambridge University Press (1987).
Fried, E., Kaiser, H.K., Marki, L., An elementary approach to polynomial interpolation in universal algebra, Algebra Universalis 15 (1982), 40–57.
Frobenius, G., Über endliche Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berlin 1895, 163–194.
Frucht, R., Lattices with a given abstract group of automorphisms, Canad. J. Math. 2 (1950), 417–419.
Glazek, K., Michalski, J., Weak homomorphisms of general algebras, Comment. Math. Prace Mat. 19 (1976/77), 211–228.
Goldfarb, W.D., The undecidability of the second-order unification problem, J. Theoret. Comput. Sci. 13 (1981), 225–230.
Gorlov, W.W., On congruences of Post classes, Mat. Zametki 13 (1973), 725–734.
Graczynska, E., On bases for normal identities, Studia Sci. Math. Hungar. 19 (1984), 317–320.
Graczynska, E., On normal and regular identities and hyperidentities, in: Universal and Applied Algebra ( K. Halkowska, B. Stawski, eds.), World Scientific Publ. Co., Singapore (1989), 107–135.
Graczynska, E., On normal and regular identities, Algebra Universalis 27 (1990), 387–397.
Graczynska, E., Schweigert, D., Hypervarieties of a given type, Algebra Universalis 27 (1990), 305–318.
Grätzer, G., Universal Algebra, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York (1979).
Henkin, L., Completeness in the theory of types, J. Symbolic Logic 15 (1950), 81–91.
Hyndman, J., McKenzie, R., Taylor, W., k-ary monoids of term operations, Semigroup Forum 44 (1992), 21–52.
Hall, M., Jr., The Theory of Groups, MacMillan, New York (1959).
Hedrlín, Z., Pultr, A., Relations (graphs) with given finitely generated semigroups, Monatsh. Math. 68 (1964), 213–217.
Jablonski, S.W., Gawrilow, G.P., Kudrjawzew, W.B., Boolesche Funktionen and Postsche Klassen, Vieweg, Braunschweig (1970).
Jezek, J., McNulty, G.F., Bounded and well placed theories in the lattice of equational theories. Manuscript.
Kelly, D., Complete rules of inference for universal sentences, Studia Sci. Math. Hungar. 19 (1984), 347–361.
Knoebel, R.A., Products of independent algebras with finitely generated identities, Algebra Universalis 3 (1973), 147–151.
Kolibiar, M., Weak homomorphism in some classes of algebras, Studia Sci. Math. Hungar. 19 (1984), 413–420.
Lau, D., On closed subsets of Boolean functions I, J. Inform. Process. Cybernet. 27 (1991), 167–178.
Lausch, H., Nöbauer, W., Algebra of Polynomials, North-Holland, Amsterdam (1973).
Malcev, A.I., Metamathematics of Algebraic Systems, North-Holland, Amsterdam (1971).
Malcev, A.I., Algebraic Systems, Springer-Verlag, Berlin (1973).
Malcev, I.A., Schweigert, D., Hyperidentities of QZ-algebras, Siberian Math. J. 30 (6) (1989), 132–137 (Russian).
Martin, U., Nipkow, T., Unification in Boolean rings, J. Automat. Reason. 4 (1989), 381–396.
McKenzie, R., McNulty, G., Taylor, W., Algebras, Lattices, Varieties, Vol. I, Wadsworth Books (1987), Monterey, CA.
McKenzie, R., Hobby, D., The Structure of Finite Algebras, Contemp. Math. 76 (1988), Amer. Math. Soc., Providence, RI.
McKenzie R., Valeriote, M., The Structure of Decidable Locally Finite Varieties, Birkhäuser, Basel (1989).
McNulty, G., Fragments of first order logic, I: Universal Horn logic, J. Symbolic Logic 42 (1977), 221–237.
Movsisyan, Yu. M., Introduction to the Theory of Algebras with Hyper-identities, University of Erevan (1986) ( Russian).
Neumann, W.D., On Malcev conditions, J. Austral. Math. Soc. 17 (1977), 376–384.
Newrly, N., Lattices of equational theories are congruence lattices of monoids with one additional operation, Preprint 1235, TH Darmstadt (1989).
Nicolas, J.L., Ordre maximal d’un lment du groupe S„ des permutations et “highly composite numbers”, Bull. Soc. Math. France 97 (1969), 129–191.
Padmanabhan, R., Penner, P., Bases of hyperidentities of lattices and semilattices, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 9–14.
Pâlfy, P.P., Unary polynomials in algebras I, Algebra Universalis 18 (1984) 262–273.
Penner, P., Hyperidentities of lattices and semi-lattices, Algebra Universalis 13 (1981), 307–314.
Penner, P., Hyperidentities of semilattices, Houston J. Math. 10 (1984), 81–108.
Perkins, P., Bases for equational theories of semigroups, J. Algebra 11 (1968), 298–314.
Pigozzi, D., On some operations on classes of algebras, Algebra Universalis 2 (1972), 346–353.
Pixley, A.F., A survey of interpolation in universal algebra, in: Finite Algebra and Multiple-Valued Logic (B. Csâkâny, I.G. Rosenberg, eds.), Colloq. Math. Soc. Janos Bolyai 28 (1979), 203–244.
Plonka, J., Diagonal algebras, Fund. Math. 58 (1966), 309–321.
Plonka, J., On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241–247.
Quackenbush, R.W., Primality: the influence of Boolean algebras in universal algebra in [Grätzer], 401–416.
Reichel, Schweigert, D., Unpublished manuscript (1991).
Reischer, C., Schweigert, D., Simovici, D., A completeness criterion by functional equations, Proc. 17th Internat. Symposium on Multivalued Logic, Boston 1987,IEEE Computer Soc. Publ. Office.
Reischer, C., Simovici, D., Several remarks on the iteration properties of switching functions, Proc. 12th Internat. Symposium on Multiple-Valued Logic, Paris 1982,IEEE Computer Soc. Publ. Office, 244–247.
Romanowska, A., Smith, J., Modal Theory - an Algebraic Approach to Order, Heldermann, Berlin (1985).
Rosenberg, I.G., Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Ceskoslovenské Akad. Véd. Rada Mat. Pi rod. Véd. 80 (1970), 3–93.
Rosenberg, I.G., Characterization of Malcev’s preiterative algebra, Preprint CRM-594, Centre de recherches mathmatiques, Université de Montréal (1976).
Rosenberg, I.G., Subalgebra systems of direct powers, Algebra Universalis 8 (1978), 221–227.
Rosenberg, I.G., Minimal clones I: the five types, in: Lectures in Universal Algebra (L. Szabó, A. Szendrei, eds.), Colloq. Soc. Math. Janos Bolyai 43 (1986), 405–428.
Rosenberg, I.G., Schweigert, D., Locally maximal clones. Elektron. Informationsverab. Kybernetik 19 (1982), 7–8 and 389–401.
Rousseau, G., Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc. 18 (1967), 1009–1013.
Sauer, N., Stone, M.G., Composing functions to reduce image size. Ars. Combin. 31 (1991), 171–176.
Schweigert, D., Über endliche, ordnungspolynomvollständige Verbände, Monatsh. Math. 78 (1974), 68–76.
Schweigert, D., Über idempotente Polynomfunktionen auf Verbänden, Elem. Math. 30 (1975), 30–32.
Schweigert, D., On prepolynomially complete algebras, J. London Math. Soc. (2) 20 (1979), 179–185.
Schweigert, D., On semigroups of polynomial functions, Semigroup Forum 18 (1979), 5–8.
Schweigert, D., Clone equations and hyperidentities, Preprint no. 86, Universität Kaiserslautern (1984).
Schweigert, D., On weak isomorphisms and equational theories, in: Contributions to General Algebra, Vol. 3, ( G. Eigenthaler et al., eds.), HölderPichler-Tempsky, Wien; Teubner, Stuttgart (1985), 335–340.
Schweigert, D., Clones of term functions of lattices and abelian groups, Algebra Universalis 20 (1985), 27–33.
Schweigert, D., Congruence relations of multialgebras, Discrete Math. 53 (1985), 249–253.
Schweigert, D., On algebras and clones, Semigroup Forum 35 (1987), 85
Schweigert, D., On equations of clones, in: Mathematical Problems in Computation Theory,Banach Center Publications 21, Warsaw (1987), 367–373.
Schweigert, D., Hyperidentities and clone congruences, Contemp. Math. 131 (1992), 284–293.
Schweigert, D., Clone homomorphisms and reductions, J. Inform. Process. Cybernet. 26 (1990), 237–245.
Schweigert, D., Hyperidentities and solid models, Z. Math. Logik Grund-lag. Math.,to appear.
Schweigert, D., Hybrid terms and sentences, to appear in Studia Logica.
Schweigert, D., Szymanska, M., Polynomial functions of correlation lattices, Algebra Universalis 16 (1983), 355–359.
Selman, A., Completeness of calculi for axiomatically defined classes of algebras, Algebra Universalis 2 (1972), 20–32.
Siekmann, J.H., Universal unification, in: 7th Internat. Conference on Automated Deduction (R.E. Shostak, ed.), Lecture Notes in Comput. Sci. 170, Springer-Verlag, Berlin, New York (1984), 1–42.
Simelgor, E.P., Identities in a finite symmetric semigroup, in: Modern Algebra, No. 1,Leningrad. Gos. Ped. Inst., Leningrad (1974), 174–188 (Russian).
Shevrin, L.N., Volkov, M.V., Identities of semigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 11 (1985), 3–47 (Russian).
Smith, J.D.H., Malcev Varieties, Lecture Notes in Math. 554, Springer-Verlag, Berlin, Heidelberg, New York (1976).
Szendrei, A., Clones in Universal Algebra, Séminaire Math. Supérieures 99, Les Presses de l’Université de Montréal (1986).
Taylor, W., Characterizing Malcev conditions, Algebra Universalis 3 (1973), 351–397.
Taylor, W., The fine spectrum of a variety, Algebra Universalis 5 (1975), 263–303.
Taylor, W., Equational logic, Houston J. Math. 5 (1979), 1–83.
Taylor, W., Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 30–49.
Volkov, M.V., On finitely based semigroup varieties, Mat. Zametki 45 (1989), 13–23 (Russian), translation Math. Notes 45, 187–194.
Wille, R., Über endliche, ordnungsvollständige Verbände, Math. Z. 155 (1977), 103–107.
Wismath, S.L., Hyperidentities for some varieties of semigroups, Algebra Universalis 27 (1990), 111–127.
Wismath, S.L., Hyperidentities for some varieties of commutative semi-groups, Algebra Universalis 28 (1991), 245–273.
Wismath, S.L., Hyperidentity bases for rectangular bands and nilpotent semigroups, to appear in J. Austral. Math. Soc..
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Schweigert, D. (1993). Hyperidentities. In: Rosenberg, I.G., Sabidussi, G. (eds) Algebras and Orders. NATO ASI Series, vol 389. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0697-1_10
Download citation
DOI: https://doi.org/10.1007/978-94-017-0697-1_10
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-4243-9
Online ISBN: 978-94-017-0697-1
eBook Packages: Springer Book Archive