Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hyperidentities

  • Chapter
Algebras and Orders

Part of the book series: NATO ASI Series ((ASIC,volume 389))

Abstract

If one considers free algebras as semigroups of composition of terms or more specifically as clones of terms, the identities of these semigroups (respectively clones) can be interpreted as hyperidentities. Hyperidentities contain hypervariables which stand for terms, and describe the manipulation of these terms. We present a logic for hyperidentities and more generally for hybrid identities, a completeness theorem and deal with solid varieties. Separating hyperidentities for various semigroups and clones are presented next. The congruences of free algebras and of the clones of terms are described. Furthermore, many open questions and problems are included.

Dla Magdy, Dagusi i Krzysia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aczél, J., Proof of a theorem of distributive type hyperidentities, Algebra Universalis 1 (1971), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  2. Asser, G., Einführung in die mathematische Logik I-III, Teubner, Leipzig (1981).

    Google Scholar 

  3. Baker, K.A., Pixley, A.F., Polynomial interpolation and the chinese remainder theorem for algebraic systems, Math. Z. 143 (1975), 165–174.

    Article  MathSciNet  MATH  Google Scholar 

  4. Belousov, V.D., Systems of quasigroups with generalized identities, Uspekhi Mat. Nauk. 20 (1965), 75–146 (Translation: Russian Math. Surveys 20 75–143 ).

    Google Scholar 

  5. Bergman, G.M., Hyperidentities of groups and semigroups, Aequationes Math. 23 (1981), 50–65.

    Article  MathSciNet  Google Scholar 

  6. Berman, J.,Free spectra of 3-element algebras, Preprint, University of Illinois at Chicago, p. 42.

    Google Scholar 

  7. Birkhoff, G., On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433–454.

    Article  Google Scholar 

  8. Chang, C.C., Keisler, H.J., Model Theory, North-Holland, Amsterdam (1973).

    MATH  Google Scholar 

  9. Clark, D.M., Krauss, P.H., Plain para primal algebras, Algebra Universalis 11 (1980), 365–388.

    Article  MathSciNet  MATH  Google Scholar 

  10. Clocksin, W.F., Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin, Heidelberg, New York (1981).

    Google Scholar 

  11. Csâkâny, B., All minimal clones on the three element set, Acta Cybernet. 6 (1983), 227–238.

    MathSciNet  MATH  Google Scholar 

  12. Dudek, J., Graczynska E., The lattice of varieties of algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 337–349.

    MathSciNet  MATH  Google Scholar 

  13. Davey, B.A., Priestley, H.A., Introduction to Lattices and Order, Cambridge University Press, Cambridge (1990).

    MATH  Google Scholar 

  14. Denecke, K., Boolean clones and hyperidentities in universal algebras, in: Universal and Applied Algebra ( K. Halkowska, B. Stawski, eds.), World Scientific Publishing Co., Singapore (1989), 23–45.

    Google Scholar 

  15. Denecke, K., Lau, D., Pöschel, R., Schweigert, D., Hyperidentities, hyperequational classes and clone congruences, in: Contributions to General Algebra, Vol. 7, Teubner, Wien (1991), 97–118.

    Google Scholar 

  16. Denecke, K., Malcev, I.A., Reschke, M., Separation of Boolean clones by hyperidentities, Preprint 1990.

    Google Scholar 

  17. Denecke, K., Pöschel, R., A characterization of Sheffer functions by hyperidentities, Semigroup Forum 37 (1988), 351–362.

    Article  MathSciNet  MATH  Google Scholar 

  18. Denecke, K., Pöschel, R., The characterization of primal algebras by hyperidentities, in: Contributions to General Algebra, Vol. 6, Teubner, Stuttgart (1988).

    Google Scholar 

  19. Denecke, K., Reichel, M., Funktionalgleichungen in zweiwertigen Logiken, Wiss. Z. Pädag. Hochsch. Potsdam 32 (1988), 603–606.

    MathSciNet  MATH  Google Scholar 

  20. Enderton, H.B., Mathematical Introduction to Logic, Academic Press, New York (1972).

    MATH  Google Scholar 

  21. Evans, T., Some remarks on the general theory of clones, in: Finite Algebra and Multiple-Valued Logic (B. Csakany, I.G. Rosenberg, eds.), Colloq. Math. Soc. Janos Bolyai 28 (1979), 203–244.

    Google Scholar 

  22. Felscher, W., Equational maps, in: Contributions to Mathematical Logic ( H.A. Schmidt et al., eds.), North-Holland, Amsterdam (1968), 121–161.

    Google Scholar 

  23. Freese, R., McKenzie, R., Commutator Theory for Congruence Modular Varieties, Cambridge University Press (1987).

    Google Scholar 

  24. Fried, E., Kaiser, H.K., Marki, L., An elementary approach to polynomial interpolation in universal algebra, Algebra Universalis 15 (1982), 40–57.

    Article  MathSciNet  MATH  Google Scholar 

  25. Frobenius, G., Über endliche Gruppen, Sitzungsber. Preuss. Akad. Wiss. Berlin 1895, 163–194.

    Google Scholar 

  26. Frucht, R., Lattices with a given abstract group of automorphisms, Canad. J. Math. 2 (1950), 417–419.

    Article  MathSciNet  MATH  Google Scholar 

  27. Glazek, K., Michalski, J., Weak homomorphisms of general algebras, Comment. Math. Prace Mat. 19 (1976/77), 211–228.

    Google Scholar 

  28. Goldfarb, W.D., The undecidability of the second-order unification problem, J. Theoret. Comput. Sci. 13 (1981), 225–230.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gorlov, W.W., On congruences of Post classes, Mat. Zametki 13 (1973), 725–734.

    MathSciNet  MATH  Google Scholar 

  30. Graczynska, E., On bases for normal identities, Studia Sci. Math. Hungar. 19 (1984), 317–320.

    MathSciNet  MATH  Google Scholar 

  31. Graczynska, E., On normal and regular identities and hyperidentities, in: Universal and Applied Algebra ( K. Halkowska, B. Stawski, eds.), World Scientific Publ. Co., Singapore (1989), 107–135.

    Google Scholar 

  32. Graczynska, E., On normal and regular identities, Algebra Universalis 27 (1990), 387–397.

    Article  MathSciNet  MATH  Google Scholar 

  33. Graczynska, E., Schweigert, D., Hypervarieties of a given type, Algebra Universalis 27 (1990), 305–318.

    Article  MathSciNet  MATH  Google Scholar 

  34. Grätzer, G., Universal Algebra, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York (1979).

    MATH  Google Scholar 

  35. Henkin, L., Completeness in the theory of types, J. Symbolic Logic 15 (1950), 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hyndman, J., McKenzie, R., Taylor, W., k-ary monoids of term operations, Semigroup Forum 44 (1992), 21–52.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hall, M., Jr., The Theory of Groups, MacMillan, New York (1959).

    MATH  Google Scholar 

  38. Hedrlín, Z., Pultr, A., Relations (graphs) with given finitely generated semigroups, Monatsh. Math. 68 (1964), 213–217.

    Article  MathSciNet  MATH  Google Scholar 

  39. Jablonski, S.W., Gawrilow, G.P., Kudrjawzew, W.B., Boolesche Funktionen and Postsche Klassen, Vieweg, Braunschweig (1970).

    Google Scholar 

  40. Jezek, J., McNulty, G.F., Bounded and well placed theories in the lattice of equational theories. Manuscript.

    Google Scholar 

  41. Kelly, D., Complete rules of inference for universal sentences, Studia Sci. Math. Hungar. 19 (1984), 347–361.

    MathSciNet  MATH  Google Scholar 

  42. Knoebel, R.A., Products of independent algebras with finitely generated identities, Algebra Universalis 3 (1973), 147–151.

    Article  MathSciNet  MATH  Google Scholar 

  43. Kolibiar, M., Weak homomorphism in some classes of algebras, Studia Sci. Math. Hungar. 19 (1984), 413–420.

    MathSciNet  MATH  Google Scholar 

  44. Lau, D., On closed subsets of Boolean functions I, J. Inform. Process. Cybernet. 27 (1991), 167–178.

    MATH  Google Scholar 

  45. Lausch, H., Nöbauer, W., Algebra of Polynomials, North-Holland, Amsterdam (1973).

    MATH  Google Scholar 

  46. Malcev, A.I., Metamathematics of Algebraic Systems, North-Holland, Amsterdam (1971).

    Google Scholar 

  47. Malcev, A.I., Algebraic Systems, Springer-Verlag, Berlin (1973).

    Book  Google Scholar 

  48. Malcev, I.A., Schweigert, D., Hyperidentities of QZ-algebras, Siberian Math. J. 30 (6) (1989), 132–137 (Russian).

    Google Scholar 

  49. Martin, U., Nipkow, T., Unification in Boolean rings, J. Automat. Reason. 4 (1989), 381–396.

    Article  MathSciNet  Google Scholar 

  50. McKenzie, R., McNulty, G., Taylor, W., Algebras, Lattices, Varieties, Vol. I, Wadsworth Books (1987), Monterey, CA.

    Google Scholar 

  51. McKenzie, R., Hobby, D., The Structure of Finite Algebras, Contemp. Math. 76 (1988), Amer. Math. Soc., Providence, RI.

    Google Scholar 

  52. McKenzie R., Valeriote, M., The Structure of Decidable Locally Finite Varieties, Birkhäuser, Basel (1989).

    Book  MATH  Google Scholar 

  53. McNulty, G., Fragments of first order logic, I: Universal Horn logic, J. Symbolic Logic 42 (1977), 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  54. Movsisyan, Yu. M., Introduction to the Theory of Algebras with Hyper-identities, University of Erevan (1986) ( Russian).

    Google Scholar 

  55. Neumann, W.D., On Malcev conditions, J. Austral. Math. Soc. 17 (1977), 376–384.

    Article  Google Scholar 

  56. Newrly, N., Lattices of equational theories are congruence lattices of monoids with one additional operation, Preprint 1235, TH Darmstadt (1989).

    Google Scholar 

  57. Nicolas, J.L., Ordre maximal d’un lment du groupe S„ des permutations et “highly composite numbers”, Bull. Soc. Math. France 97 (1969), 129–191.

    MathSciNet  MATH  Google Scholar 

  58. Padmanabhan, R., Penner, P., Bases of hyperidentities of lattices and semilattices, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 9–14.

    MathSciNet  MATH  Google Scholar 

  59. Pâlfy, P.P., Unary polynomials in algebras I, Algebra Universalis 18 (1984) 262–273.

    Article  MathSciNet  MATH  Google Scholar 

  60. Penner, P., Hyperidentities of lattices and semi-lattices, Algebra Universalis 13 (1981), 307–314.

    Article  MathSciNet  MATH  Google Scholar 

  61. Penner, P., Hyperidentities of semilattices, Houston J. Math. 10 (1984), 81–108.

    MathSciNet  MATH  Google Scholar 

  62. Perkins, P., Bases for equational theories of semigroups, J. Algebra 11 (1968), 298–314.

    Article  MathSciNet  Google Scholar 

  63. Pigozzi, D., On some operations on classes of algebras, Algebra Universalis 2 (1972), 346–353.

    Article  MathSciNet  MATH  Google Scholar 

  64. Pixley, A.F., A survey of interpolation in universal algebra, in: Finite Algebra and Multiple-Valued Logic (B. Csâkâny, I.G. Rosenberg, eds.), Colloq. Math. Soc. Janos Bolyai 28 (1979), 203–244.

    Google Scholar 

  65. Plonka, J., Diagonal algebras, Fund. Math. 58 (1966), 309–321.

    MathSciNet  MATH  Google Scholar 

  66. Plonka, J., On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241–247.

    MathSciNet  MATH  Google Scholar 

  67. Quackenbush, R.W., Primality: the influence of Boolean algebras in universal algebra in [Grätzer], 401–416.

    Google Scholar 

  68. Reichel, Schweigert, D., Unpublished manuscript (1991).

    Google Scholar 

  69. Reischer, C., Schweigert, D., Simovici, D., A completeness criterion by functional equations, Proc. 17th Internat. Symposium on Multivalued Logic, Boston 1987,IEEE Computer Soc. Publ. Office.

    Google Scholar 

  70. Reischer, C., Simovici, D., Several remarks on the iteration properties of switching functions, Proc. 12th Internat. Symposium on Multiple-Valued Logic, Paris 1982,IEEE Computer Soc. Publ. Office, 244–247.

    Google Scholar 

  71. Romanowska, A., Smith, J., Modal Theory - an Algebraic Approach to Order, Heldermann, Berlin (1985).

    MATH  Google Scholar 

  72. Rosenberg, I.G., Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Ceskoslovenské Akad. Véd. Rada Mat. Pi rod. Véd. 80 (1970), 3–93.

    Google Scholar 

  73. Rosenberg, I.G., Characterization of Malcev’s preiterative algebra, Preprint CRM-594, Centre de recherches mathmatiques, Université de Montréal (1976).

    Google Scholar 

  74. Rosenberg, I.G., Subalgebra systems of direct powers, Algebra Universalis 8 (1978), 221–227.

    Article  MathSciNet  MATH  Google Scholar 

  75. Rosenberg, I.G., Minimal clones I: the five types, in: Lectures in Universal Algebra (L. Szabó, A. Szendrei, eds.), Colloq. Soc. Math. Janos Bolyai 43 (1986), 405–428.

    Google Scholar 

  76. Rosenberg, I.G., Schweigert, D., Locally maximal clones. Elektron. Informationsverab. Kybernetik 19 (1982), 7–8 and 389–401.

    Google Scholar 

  77. Rousseau, G., Completeness in finite algebras with a single operation, Proc. Amer. Math. Soc. 18 (1967), 1009–1013.

    Article  MathSciNet  MATH  Google Scholar 

  78. Sauer, N., Stone, M.G., Composing functions to reduce image size. Ars. Combin. 31 (1991), 171–176.

    MathSciNet  MATH  Google Scholar 

  79. Schweigert, D., Über endliche, ordnungspolynomvollständige Verbände, Monatsh. Math. 78 (1974), 68–76.

    Article  MathSciNet  MATH  Google Scholar 

  80. Schweigert, D., Über idempotente Polynomfunktionen auf Verbänden, Elem. Math. 30 (1975), 30–32.

    MathSciNet  MATH  Google Scholar 

  81. Schweigert, D., On prepolynomially complete algebras, J. London Math. Soc. (2) 20 (1979), 179–185.

    Article  MathSciNet  MATH  Google Scholar 

  82. Schweigert, D., On semigroups of polynomial functions, Semigroup Forum 18 (1979), 5–8.

    Article  MathSciNet  MATH  Google Scholar 

  83. Schweigert, D., Clone equations and hyperidentities, Preprint no. 86, Universität Kaiserslautern (1984).

    Google Scholar 

  84. Schweigert, D., On weak isomorphisms and equational theories, in: Contributions to General Algebra, Vol. 3, ( G. Eigenthaler et al., eds.), HölderPichler-Tempsky, Wien; Teubner, Stuttgart (1985), 335–340.

    Google Scholar 

  85. Schweigert, D., Clones of term functions of lattices and abelian groups, Algebra Universalis 20 (1985), 27–33.

    Article  MathSciNet  MATH  Google Scholar 

  86. Schweigert, D., Congruence relations of multialgebras, Discrete Math. 53 (1985), 249–253.

    Article  MathSciNet  MATH  Google Scholar 

  87. Schweigert, D., On algebras and clones, Semigroup Forum 35 (1987), 85

    Article  MathSciNet  MATH  Google Scholar 

  88. Schweigert, D., On equations of clones, in: Mathematical Problems in Computation Theory,Banach Center Publications 21, Warsaw (1987), 367–373.

    Google Scholar 

  89. Schweigert, D., Hyperidentities and clone congruences, Contemp. Math. 131 (1992), 284–293.

    MathSciNet  Google Scholar 

  90. Schweigert, D., Clone homomorphisms and reductions, J. Inform. Process. Cybernet. 26 (1990), 237–245.

    MathSciNet  Google Scholar 

  91. Schweigert, D., Hyperidentities and solid models, Z. Math. Logik Grund-lag. Math.,to appear.

    Google Scholar 

  92. Schweigert, D., Hybrid terms and sentences, to appear in Studia Logica.

    Google Scholar 

  93. Schweigert, D., Szymanska, M., Polynomial functions of correlation lattices, Algebra Universalis 16 (1983), 355–359.

    Article  MathSciNet  MATH  Google Scholar 

  94. Selman, A., Completeness of calculi for axiomatically defined classes of algebras, Algebra Universalis 2 (1972), 20–32.

    Article  MathSciNet  MATH  Google Scholar 

  95. Siekmann, J.H., Universal unification, in: 7th Internat. Conference on Automated Deduction (R.E. Shostak, ed.), Lecture Notes in Comput. Sci. 170, Springer-Verlag, Berlin, New York (1984), 1–42.

    Google Scholar 

  96. Simelgor, E.P., Identities in a finite symmetric semigroup, in: Modern Algebra, No. 1,Leningrad. Gos. Ped. Inst., Leningrad (1974), 174–188 (Russian).

    Google Scholar 

  97. Shevrin, L.N., Volkov, M.V., Identities of semigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 11 (1985), 3–47 (Russian).

    Google Scholar 

  98. Smith, J.D.H., Malcev Varieties, Lecture Notes in Math. 554, Springer-Verlag, Berlin, Heidelberg, New York (1976).

    Google Scholar 

  99. Szendrei, A., Clones in Universal Algebra, Séminaire Math. Supérieures 99, Les Presses de l’Université de Montréal (1986).

    Google Scholar 

  100. Taylor, W., Characterizing Malcev conditions, Algebra Universalis 3 (1973), 351–397.

    Article  MathSciNet  MATH  Google Scholar 

  101. Taylor, W., The fine spectrum of a variety, Algebra Universalis 5 (1975), 263–303.

    Article  MathSciNet  MATH  Google Scholar 

  102. Taylor, W., Equational logic, Houston J. Math. 5 (1979), 1–83.

    MathSciNet  Google Scholar 

  103. Taylor, W., Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 30–49.

    Article  MathSciNet  MATH  Google Scholar 

  104. Volkov, M.V., On finitely based semigroup varieties, Mat. Zametki 45 (1989), 13–23 (Russian), translation Math. Notes 45, 187–194.

    Google Scholar 

  105. Wille, R., Über endliche, ordnungsvollständige Verbände, Math. Z. 155 (1977), 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  106. Wismath, S.L., Hyperidentities for some varieties of semigroups, Algebra Universalis 27 (1990), 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  107. Wismath, S.L., Hyperidentities for some varieties of commutative semi-groups, Algebra Universalis 28 (1991), 245–273.

    Article  MathSciNet  MATH  Google Scholar 

  108. Wismath, S.L., Hyperidentity bases for rectangular bands and nilpotent semigroups, to appear in J. Austral. Math. Soc..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schweigert, D. (1993). Hyperidentities. In: Rosenberg, I.G., Sabidussi, G. (eds) Algebras and Orders. NATO ASI Series, vol 389. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0697-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0697-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4243-9

  • Online ISBN: 978-94-017-0697-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics