Abstract
Vehicle route optimization is an important application of combinatorial optimization. Therefore, a variety of methods has been proposed to solve different challenging vehicle routing problems. An important step in adopting these methods to solve real-life problems is to find appropriate parameters for the routing algorithms. In this chapter, we show how this task can be automated using parameter tuning by presenting a set of comparative experiments on seven state-of-the-art tuning methods. We analyze the suitability of these methods in configuring routing algorithms, and give the first critical comparison of automated parameter tuners in vehicle routing. Our experimental results show that the tuning methods are able to effectively automate the task of parameter configuration of route optimization systems. Moreover, our comparison shows that while routing algorithms clearly benefit from parameter tuning, and while there is no single tuner which consistently outperforms others, the tuning performance can be clearly improved with careful choice of a tuning method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
was disabled for its tendency to produce infeasible route
- 2.
- 3.
Version 0.9.93.4r2658, http://www.lri.fr/~hansen/cmaesintro.html.
- 4.
Version 0.9, http://iridia.ulb.ac.be/irace/.
- 5.
Version 2.3.5, http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
Version 2.0.2, http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.
References
Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent IP (ed) CP’09 Proceedings of the 15th international conference on principles and practice of constraint programming. Lecture notes in computer science, vol 5732. Springer, Berlin, pp 142–157
Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the F-Race algorithm: sampling design and iterative refinement. IRIDIA—technical report series TR/IRIDIA/2007-011, Université Libre de Bruxelles
Baldacci R, Bartolini E, Mingozzi A, Roberti R (2010) An exact solution framework for a broad class of vehicle routing problems. Comput Manag Sci 7(3):229–268
Bartz-Beielstein T, Lasarczyk C, Preuß M (2005) Sequential parameter optimization. In: The 2005 IEEE congress on evolutionary computation, vol 1. IEEE Press, pp 773–780
Battiti R, Brunato M (2010) Reactive search optimization: learning while optimizing. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer, Berlin, pp 543–571
Becker S, Gottlieb J, Stützle T (2006) Applications of racing algorithms: an industrial perspective. In: EA’05 proceedings of the 7th international conference on artificial evolution. Lecture notes in computer science, vol 3871. Springer, Berlin, pp 271–283
Bianchi L, Birattari M, Chiarandini M, Manfrin M, Mastrolilli M, Paquete L, Rossi-Doria O, Schiavinotto T (2006) Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J Math Model Algorithms 5(1):91–110
Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: GECCO 2002 proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, CA, pp 11–18
Birattari M, Yuan Z, Balaprakash P, Stützle T (2010) F-Race and iterated F-Race: an overview. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin, pp 311–336
Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester, pp 315–338
Coy SP, Golden BL, Runger GC, Wasil EA (2001) Using experimental design to find effective parameter settings for heuristics. J Heuristics 7(1):77–97
Dantzig GB, Ramser JH (1959/1960) The truck dispatching problem. Manage Sci 6:80–91
Drexl M (2011) Rich vehicle routing in theory and practice. Technical report LM-2011-04, Johannes Gutenberg University, Mainz
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evolut Comput 3(2):124–141
Garrido P, Castro C, Monfroy E (2009) Towards a flexible and adaptable hyperheuristic approach for VRPs. In: Arabnia HR, de la Fuente D, Olivas JA (eds.) Proceedings of the 2009 international conference on artificial intelligence (ICAI 2009). CSREA Press, pp 311–317
Gendreau M, Laporte G, Séguin R (1996) Stochastic vehicle routing. Europ J Oper Res 88(1):3–12
Groër C, Golden B, Wasil E (2010) A library of local search heuristics for the vehicle routing problem. Math Program Comput 2(2):79–101
Hansen N (2006) The CMA evolution strategy: a comparing review. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation: advances on estimation of distribution algorithms. Springer, Berlin, pp 75–102
Hepdogan S, Moraga R, DePuy G, Whitehouse G (2007) Nonparametric comparison of two dynamic parameter setting methods in a meta-heuristic approach. J Syst Cybern Inform 5(5):46–52
Hutter F, Hoos HH, Leyton-Brown K (2010) Automated configuration of mixed integer programming solvers. In: Lodi A, Milano M, Toth P (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Lecture notes in computer science, vol 6140. Springer, Berlin, pp 186–202
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello-Coello CA (ed) Learning and intelligent optimization: 5th international conference (LION 5, Rome, 2011). Lecture notes in computer science, vol 6683. Springer, Berlin, pp 507–523
Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res (JAIR) 36:267–306
Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010) ISAC— instance-specific algorithm configuration. In: Coelho H, Studer R, Wooldridge M (eds) ECAI 2010–19th European conference on artificial intelligence. IOS Press, Amsterdam, pp 751–756
Laporte G (2007) What you should know about the vehicle routing problem. Naval Res Logist 54(8):811–819
López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package: iterated racing for automatic algorithm configuration. IRIDIA—technical report series TR/IRIDIA/2011-004, Université Libre de Bruxelles
Miki M, Hiroyasu T, Jitta T (2003) Adaptive simulated annealing for maximum temperature. In: 2003 IEEE international conference on systems, man and cybernetics. IEEE, vol 1, pp 20–25
Montero E, Riff MC, Neveu B (2010) An evaluation of off-line calibration techniques for evolutionary algorithms. In: GECCO’10 proceedings of the 12th annual conference on genetic and evolutionary computation. ACM, New York, pp 299–300
Montero E, Riff MC, Neveu B (2010) New requirements for off-line parameter calibration algorithms. In: 2010 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
Nannen V, Eiben AE (2007) Efficient relevance estimation and value calibration of evolutionary algorithm parameters. In: CEC 2007 IEEE congress on evolutionary computation. IEEE, pp 103–110
Pellegrini P (2005) Application of two nearest neighbor approaches to a rich vehicle routing problem. In: IRIDIA—technical report series TR/IRIDIA/2005-015, Université Libre de Bruxelles
Pellegrini P, Birattari M (2006) The relevance of tuning the parameters of metaheuristics. A case study: the vehicle routing problem with stochastic demand. IRIDIA—technical report series TR/IRIDIA/2006-008, Université Libre de Bruxelles
Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: CEC ’09 IEEE congress on evolutionary computation. IEEE, pp 399–406
Toth P, Vigo D (eds) (2002) The vehicle routing problem. SIAM, Philadelphia, PA
Vidal T, Crainic TG, Gendreau M, Lahrichi N, Rei W (2012) A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper Res 60(3):611–624
Yuan Z, Montes de Oca, MA, Birattari M, Stützle T (2010) Modern continuous optimization algorithms for tuning real and integer algorithm parameters. In: Swarm intelligence: proceedings of the 7th international conference. ANTS 2010. Lecture notes in computer science, vol 6234. Springer, Berlin, pp 203–214
Acknowledgments
Support from colleagues from the Research Group on Computational Logistics of Department of Mathematical Information Technology (University of Jyväskylä) is gratefully acknowledged. Office for Jussi Rasku at University Consortium of Seinäjoki researcher residency was supported by European Regional Development Fund (ERDF): A31342. Nysret Musliu was supported by the Austrian Science Fund (FWF): P24814-N23. Tommi Kärkkäinen was supported by a research grant of Jenny and Antti Wihuri Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Rasku, J., Musliu, N., Kärkkäinen, T. (2014). Automating the Parameter Selection in VRP: An Off-line Parameter Tuning Tool Comparison. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9054-3_11
Download citation
DOI: https://doi.org/10.1007/978-94-017-9054-3_11
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-017-9053-6
Online ISBN: 978-94-017-9054-3
eBook Packages: EngineeringEngineering (R0)