Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Improved Heuristic K-Means Clustering Method Using Genetic Algorithm Based Initialization

  • Conference paper
  • First Online:
Advances in Computational Intelligence (ICCI 2015)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 509))

Included in the following conference series:

  • 896 Accesses

Abstract

In this paper, we propose methods to remove the drawbacks that commonly afflict the k-means clustering algorithm. We use nature based heuristics to improve the clustering performance offered by the k-means algorithm and also ensure the creation of the requisite number of clusters. The use of GA is found to be adequate in this case to provide a good initialization to the algorithm, and this is followed by a differential evolution based heuristic to ensure that the requisite number of clusters is created without minimal increase in the running time of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    Article  MathSciNet  Google Scholar 

  2. Pham, D., Karaboga, D.: Intelligence Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer Science and Business Media (2012)

    Google Scholar 

  3. Song, W., Qiao, Y., Park, S.C., Qian, X.: A hybrid evolutionary computation approach with its application for optimizing text document clustering. Expert Syst. Appl. 42(5), 2517–2524 (2015)

    Article  Google Scholar 

  4. İnkaya, T., Kayalıgil, S., Özdemirel, N.E.: Ant colony optimization based clustering methodology. Appl. Soft Comput. 28, 301–311 (2015)

    Article  Google Scholar 

  5. Bramer, M., Ellis, R., Petridis, M., Yang, X.S.: Firefly algorithm, Levy flights and global optimization. Research and development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010)

    Google Scholar 

  6. Oztruk, C., Hancer, E., Karaboga, D.: Improved clustering criterion for image clustering with artificial bee colony algorithm. Pattern Anal. Appl. (2014)

    Google Scholar 

  7. Gonzalez, J.,Petla, D., Cruz, C., Terrazas, G., Krasnogor, N., Yang, X.-S.: A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization, NICSO 2010, pp. 65–74. Springer (2011)

    Google Scholar 

  8. Hatamlou, A.: A Robust data clustering approach using gravitational search algorithm and a heuristic search approach. Global J. Technol. 74–83 (2014)

    Google Scholar 

  9. Cui, X., Gao, J., Potok, T.E.: A flocking based algorithm for document clustering analysis. J. Syst. Arch. 52, 505–515 (2006) (Elsevier)

    Google Scholar 

  10. Kalogeratos, A., Likas, A.: Document clustering using synthetic cluster prototypes. Data Knowl. Eng. 70(3), 284–306 (2011)

    Article  Google Scholar 

  11. Singh, V.K., Tiwari, N., Garg, S.: Document clustering using k-means, heuristic k-means and fuzzy c-means. In: 2011 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 297–301. IEEE (2011)

    Google Scholar 

  12. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)

    Google Scholar 

  13. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithm. Springer, Berlin (2006)

    Google Scholar 

  14. Premalatha, K., Natarajan, A.M.: Genetic algorithm for document clustering with simultaneous and ranked mutation. Modern Appl. Sci. 3(2) (2009)

    Google Scholar 

  15. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.: A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  16. Das, S., Abraham, A., Konar, A.: Automatic hard clustering using improved differential evolution algorithm, Stud. Comput. Intell. 137–174 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mustafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Mustafi, D., Sahoo, G., Mustafi, A. (2017). An Improved Heuristic K-Means Clustering Method Using Genetic Algorithm Based Initialization. In: Sahana, S.K., Saha, S.K. (eds) Advances in Computational Intelligence. ICCI 2015. Advances in Intelligent Systems and Computing, vol 509. Springer, Singapore. https://doi.org/10.1007/978-981-10-2525-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2525-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2524-2

  • Online ISBN: 978-981-10-2525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics