Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mining RDF Data for OWL2 RL Axioms

  • Conference paper
  • First Online:
Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data (CCKS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 650))

Included in the following conference series:

  • 1436 Accesses

Abstract

The large amounts of linked data are a valuable resource for the development of semantic applications. However, these applications often meet the challenges posed by flawed or incomplete schema, which would lead to the loss of meaningful facts. Association rule mining has been applied to learn many types of axioms. In this paper, we first use a statistical approach based on the association rule mining to enrich OWL ontologies. Then we propose some improvements according to this approach. Finally, we describe the quality of the acquired axioms by evaluations on DBpedia datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  2. Nebot, V., Berlanga, R.: Mining association rules from semantic web data. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6097, pp. 504–513. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13025-0_52

    Chapter  Google Scholar 

  3. Lorey, J., Abedjan, Z., Naumann, F., et al.: RDF ontology (re-)engineering through large-scale data mining. Semant. Web Chall. (2011)

    Google Scholar 

  4. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25106-1_20

    Chapter  Google Scholar 

  5. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1_9

    Chapter  Google Scholar 

  6. Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: International Conference on Semantic Systems, pp. 33–40. ACM (2012)

    Google Scholar 

  7. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33615-7_18

    Chapter  Google Scholar 

Download references

Acknowledgments

The work is supported by the Natural Science Foundation of Jiangsu Province under Grant BK20140643 and the National Natural Science Foundation of China under grant No. 61502095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, Y., Li, H., Shi, J. (2016). Mining RDF Data for OWL2 RL Axioms. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T., Ruan, T. (eds) Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data. CCKS 2016. Communications in Computer and Information Science, vol 650. Springer, Singapore. https://doi.org/10.1007/978-981-10-3168-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3168-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3167-0

  • Online ISBN: 978-981-10-3168-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics