Abstract
The large amounts of linked data are a valuable resource for the development of semantic applications. However, these applications often meet the challenges posed by flawed or incomplete schema, which would lead to the loss of meaningful facts. Association rule mining has been applied to learn many types of axioms. In this paper, we first use a statistical approach based on the association rule mining to enrich OWL ontologies. Then we propose some improvements according to this approach. Finally, we describe the quality of the acquired axioms by evaluations on DBpedia datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)
Nebot, V., Berlanga, R.: Mining association rules from semantic web data. In: GarcÃa-Pedrajas, N., Herrera, F., Fyfe, C., BenÃtez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS (LNAI), vol. 6097, pp. 504–513. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13025-0_52
Lorey, J., Abedjan, Z., Naumann, F., et al.: RDF ontology (re-)engineering through large-scale data mining. Semant. Web Chall. (2011)
Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman, R., et al. (eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25106-1_20
Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1_9
Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: International Conference on Semantic Systems, pp. 33–40. ACM (2012)
Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33615-7_18
Acknowledgments
The work is supported by the Natural Science Foundation of Jiangsu Province under Grant BK20140643 and the National Natural Science Foundation of China under grant No. 61502095.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, Y., Li, H., Shi, J. (2016). Mining RDF Data for OWL2 RL Axioms. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T., Ruan, T. (eds) Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data. CCKS 2016. Communications in Computer and Information Science, vol 650. Springer, Singapore. https://doi.org/10.1007/978-981-10-3168-7_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-3168-7_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3167-0
Online ISBN: 978-981-10-3168-7
eBook Packages: Computer ScienceComputer Science (R0)