Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Big Data Analytics Based Recommender System for Value Added Services (VAS)

  • Conference paper
  • First Online:
Proceedings of Sixth International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 547))

Abstract

The increasing number of services/offers in telecom domain offers more choices to the consumers. But on the other side, these large number of offers cannot be completely looked by the customer. Hence, some offers may pass unobserved even if they are useful for the particular kind of customers. To solve this issue, the usage of recommender systems in telecom sector is growing. So, there is need to notify the customer about the offers which are made on the basis of customer interests. The recommender system is based on demand or interest of consumer. In this paper we proposed a Big Data Analytics based Recommender System for Value Added Services (VAS) in case of telecom organizations so that they could gain profitability in the market by generating customer specific offers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ericsson, L.M.: More than 50 billion connected devices. White Paper (2011)

    Google Scholar 

  2. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, US (2011)

    Book  MATH  Google Scholar 

  3. Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser, M., Pazzani, M.J.: An energy-efficient mobile recommender system (PDF). In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 899–908. ACM, New York (2010). Accessed 17 Nov 2011

    Google Scholar 

  4. Bouneffouf, D.: Following the customer’s interests in mobile context-aware recommender systems: the hybrid-e-greedy algorithm. In: Proceedings of the 2012 26th International Conference on Advanced Information Networking and Applications Workshops (PDF). LNCS, pp. 657–662. IEEE Computer Society (2012). ISBN: 978-0-7695-4652-0 [dead link]

    Google Scholar 

  5. Yeung, K.F., Yang, Y.: A proactive personalized mobile news recommendation system. In: 2010 Developments in E-systems Engineering (DESE), pp. 207–212. IEEE (2010)

    Google Scholar 

  6. Danalet, A., Farooq, B., Bierlaire, M.: A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures. Transp. Res. Part C Emerg. Technol. 44, 146–170 (2014). doi:10.1016/j.trc.2014.03.015

    Article  Google Scholar 

  7. Fang, B., Liao, S., Xu, K., Cheng, H., Zhu, C., Chen, H.: A novel mobile recommender system for indoor shopping. Expert Syst. Appl. 39(15), 11992–12000 (2012)

    Article  Google Scholar 

  8. Colombo-Mendoza, L.O., Valencia-García, R., Rodríguez-González, A., Alor-Hernández, G., Samper-Zapater, J.J.: RecomMetz: a context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 42(3), 1202–1222 (2015)

    Article  Google Scholar 

  9. Chiu, P.-H., Kao, G.Y.-M., Lo, C.-C.: Personalized blog content recommender system for mobile phone customers. Int. J. Hum. Comput. Stud. 68(8), 496–507 (2010)

    Article  Google Scholar 

  10. Buettner, R.: A framework for recommender systems in online social network recruiting: an interdisciplinary call to arms. In: 47th Annual Hawaii International Conference on System Sciences, Big Island, Hawaii, pp. 1415–1424. IEEE (2014). doi:10.13140/RG.2.1.2127.3048

  11. Chen, H., Gou, L., Zhang, X., Giles, C.: Collabseer: a search engine for collaboration discovery. In: ACM/IEEE Joint Conference on Digital Libraries (JCDL) (2011)

    Google Scholar 

  12. Felfernig, A., Isak, K., Szabo, K., Zachar, P.: The VITA financial services sales support environment. In: AAAI/IAAI 2007, Vancouver, Canada, pp. 1692–1699 (2007)

    Google Scholar 

  13. Goel, A., Gupta, P., Sirois, J., Wang, D., Sharma, A., Gurumurthy, S.: The who-to-follow system at Twitter: strategy, algorithms, and revenue impact. Interfaces 45(1), 98–107 (2015)

    Article  Google Scholar 

  14. Kwon, H.-J., Hong, K.-S.: Personalized real-time location-tagged contents recommender system based on mobile social networks. In: IEEE International Conference on Consumer Electronics (ICCE), pp. 558–559. Las Vegas (2012)

    Google Scholar 

  15. Singh, S., Chana, I.: EARTH: energy-aware autonomic resource scheduling in cloud computing. J. Intell. Fuzzy Syst. 30(3), 1581–1600 (2016)

    Article  Google Scholar 

  16. Singh, S., Chana, I.: Resource provisioning and scheduling in clouds: QoS perspective. J. Supercomput. 72(3), 926–960 (2016)

    Article  Google Scholar 

  17. Singh, S., Chana, I.: QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput. Surv. (CSUR) 48(3), 42 (2016)

    Google Scholar 

  18. Singh, S., Chana, I.: QRSF: QoS-aware resource scheduling framework in cloud computing. J. Supercomput. 71(1), 241–292 (2015). Springer

    Article  Google Scholar 

  19. Singh, S., Chana, I., Singh, M., Buyya, R.: SOCCER: self-optimization of energy-efficient cloud resources. Cluster Comput. 19, 1–14 (2016). doi:10.1007/s10586-016-0623-4. Springer

    Article  Google Scholar 

  20. Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)

    Google Scholar 

  21. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). doi:10.1109/TKDE.2005.99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karan Vijay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Singh, I., Singh, K.V., Singh, S. (2017). Big Data Analytics Based Recommender System for Value Added Services (VAS). In: Deep, K., et al. Proceedings of Sixth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 547. Springer, Singapore. https://doi.org/10.1007/978-981-10-3325-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3325-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3324-7

  • Online ISBN: 978-981-10-3325-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics